in src/graph_notebook/notebooks/03-Neptune-ML/neptune_ml_utils.py [0:0]
def delete_pretrained_data(setup_node_classification: bool,
setup_node_regression: bool, setup_link_prediction: bool,
setup_edge_regression: bool, setup_edge_classification: bool):
host, port, use_iam = load_configuration()
if setup_node_classification:
response = signed_request("POST", service='neptune-db',
url=f'https://{host}:{port}/gremlin',
headers={'content-type': 'application/json'},
data=json.dumps(
{
'gremlin': "g.V('movie_28', 'movie_69', 'movie_88').properties('genre').drop()"}))
if response.status_code != 200:
print(response.content.decode('utf-8'))
if setup_node_regression:
response = signed_request("POST", service='neptune-db',
url=f'https://{host}:{port}/gremlin',
headers={'content-type': 'application/json'},
data=json.dumps({'gremlin': "g.V('user_1').out('wrote').properties('score').drop()"}))
if response.status_code != 200:
print(response.content.decode('utf-8'))
if setup_link_prediction:
response = signed_request("POST", service='neptune-db',
url=f'https://{host}:{port}/gremlin',
headers={'content-type': 'application/json'},
data=json.dumps({'gremlin': "g.V('user_1').outE('rated').drop()"}))
if response.status_code != 200:
print(response.content.decode('utf-8'))
if setup_edge_regression:
response = signed_request("POST", service='neptune-db',
url=f'https://{host}:{port}/gremlin',
headers={'content-type': 'application/json'},
data=json.dumps(
{'gremlin': "g.V('user_1').outE('rated').properties('score').drop()"}))
if response.status_code != 200:
print(response.content.decode('utf-8'))
if setup_edge_classification:
response = signed_request("POST", service='neptune-db',
url=f'https://{host}:{port}/gremlin',
headers={'content-type': 'application/json'},
data=json.dumps(
{'gremlin': "g.V('user_1').outE('rated').properties('scale').drop()"}))
if response.status_code != 200:
print(response.content.decode('utf-8'))