crypto/s2n_pkey_evp.c (229 lines of code) (raw):

/* * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). * You may not use this file except in compliance with the License. * A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either * express or implied. See the License for the specific language governing * permissions and limitations under the License. */ #include "crypto/s2n_pkey_evp.h" #include <openssl/evp.h> #include <openssl/rsa.h> #include "crypto/s2n_evp.h" #include "crypto/s2n_libcrypto.h" #include "crypto/s2n_pkey.h" #include "crypto/s2n_rsa_pss.h" #include "error/s2n_errno.h" #include "tls/s2n_signature_algorithms.h" #include "utils/s2n_random.h" #include "utils/s2n_safety.h" DEFINE_POINTER_CLEANUP_FUNC(EVP_PKEY_CTX *, EVP_PKEY_CTX_free); static S2N_RESULT s2n_evp_md_ctx_set_pkey_ctx(EVP_MD_CTX *ctx, EVP_PKEY_CTX *pctx) { #ifdef S2N_LIBCRYPTO_SUPPORTS_EVP_MD_CTX_SET_PKEY_CTX EVP_MD_CTX_set_pkey_ctx(ctx, pctx); return S2N_RESULT_OK; #else RESULT_BAIL(S2N_ERR_UNIMPLEMENTED); #endif } static S2N_RESULT s2n_evp_pkey_set_rsa_pss_saltlen(EVP_PKEY_CTX *pctx) { #if defined(S2N_LIBCRYPTO_SUPPORTS_RSA_PSS_SIGNING) RESULT_GUARD_OSSL(EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, RSA_PSS_SALTLEN_DIGEST), S2N_ERR_PKEY_CTX_INIT); return S2N_RESULT_OK; #else RESULT_BAIL(S2N_ERR_RSA_PSS_NOT_SUPPORTED); #endif } static S2N_RESULT s2n_pkey_evp_validate_sig_alg(const struct s2n_pkey *key, s2n_signature_algorithm sig_alg) { RESULT_ENSURE_REF(key); /* Ensure that the signature algorithm type matches the key type. */ s2n_pkey_type pkey_type = S2N_PKEY_TYPE_UNKNOWN; RESULT_GUARD(s2n_pkey_get_type(key->pkey, &pkey_type)); s2n_pkey_type sig_alg_type = S2N_PKEY_TYPE_UNKNOWN; RESULT_GUARD(s2n_signature_algorithm_get_pkey_type(sig_alg, &sig_alg_type)); RESULT_ENSURE(pkey_type == sig_alg_type, S2N_ERR_INVALID_SIGNATURE_ALGORITHM); return S2N_RESULT_OK; } static EVP_PKEY_CTX *s2n_evp_pkey_ctx_new(EVP_PKEY *pkey, s2n_hash_algorithm hash_alg) { PTR_ENSURE_REF(pkey); switch (hash_alg) { #if S2N_LIBCRYPTO_SUPPORTS_PROVIDERS /* For openssl-3.0, pkey methods will do an implicit fetch for the signing * algorithm, which includes the hash algorithm. If using a legacy hash * algorithm, specify the non-fips version. */ case S2N_HASH_MD5: case S2N_HASH_MD5_SHA1: case S2N_HASH_SHA1: return EVP_PKEY_CTX_new_from_pkey(NULL, pkey, "-fips"); #endif default: return EVP_PKEY_CTX_new(pkey, NULL); } } /* Our "digest-and-sign" EVP signing logic is intended to support FIPS 140-3. * FIPS 140-3 does not allow signing or verifying externally calculated digests * (except for signing, but not verifying, with ECDSA). * See https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Digital-Signatures, * and note that "component" tests only exist for ECDSA sign. * * In order to avoid signing externally calculated digests, we naively would * need access to the full message to be signed at the time of signing. That's * a problem for TLS1.2, where the client cert verify message requires signing * every handshake message sent or received before the client cert verify message. * To avoid storing every single handshake message in its entirety, we instead * keep a running hash of the messages in an EVP hash state. Then, instead of * digesting that hash state, we pass it unmodified to EVP_DigestSignFinal. * That would normally not be allowed, since the hash state was initialized without * a key using EVP_DigestInit instead of with a key using EVP_DigestSignInit. * We make it work by using the EVP_MD_CTX_set_pkey_ctx method to attach a key * to an existing hash state. * * All that means that "digest-and-sign" requires two things: * - A single EVP hash state to sign. So we must not use a custom MD5_SHA1 hash, * which doesn't produce a single hash state. * - EVP_MD_CTX_set_pkey_ctx to exist and to behave as expected. Existence * alone is not sufficient: the method exists in openssl-3.0-fips, but * it cannot be used to setup a hash state for EVP_DigestSignFinal. * * Currently only awslc-fips meets both these requirements. New libcryptos * should be assumed not to meet these requirements until proven otherwise. */ static int s2n_pkey_evp_digest_and_sign(EVP_PKEY_CTX *pctx, s2n_signature_algorithm sig_alg, struct s2n_hash_state *hash_state, struct s2n_blob *signature) { POSIX_ENSURE_REF(pctx); POSIX_ENSURE_REF(hash_state); POSIX_ENSURE_REF(signature); /* Custom MD5_SHA1 involves combining separate MD5 and SHA1 hashes. * That involves two hash states instead of the single hash state this * method requires. */ POSIX_ENSURE(!s2n_hash_use_custom_md5_sha1(), S2N_ERR_SAFETY); /* Not all implementations of EVP_MD_CTX_set_pkey_ctx behave as required * by this method. Using EVP_MD_CTX_set_pkey_ctx to convert a hash initialized * with EVP_DigestInit to one that can be finalized with EVP_DigestSignFinal * is not entirely standard. * * However, this behavior is known to work with awslc-fips. */ POSIX_ENSURE(s2n_libcrypto_is_awslc_fips(), S2N_ERR_SAFETY); EVP_MD_CTX *ctx = hash_state->digest.high_level.evp.ctx; POSIX_ENSURE_REF(ctx); POSIX_GUARD_RESULT(s2n_evp_md_ctx_set_pkey_ctx(ctx, pctx)); size_t signature_size = signature->size; POSIX_GUARD_OSSL(EVP_DigestSignFinal(ctx, signature->data, &signature_size), S2N_ERR_SIGN); POSIX_ENSURE(signature_size <= signature->size, S2N_ERR_SIZE_MISMATCH); signature->size = signature_size; POSIX_GUARD_RESULT(s2n_evp_md_ctx_set_pkey_ctx(ctx, NULL)); return S2N_SUCCESS; } /* "digest-then-sign" means that we calculate the digest for a hash state, * then sign the digest bytes. That is not allowed by FIPS 140-3, but is allowed * in all other cases. */ static int s2n_pkey_evp_digest_then_sign(EVP_PKEY_CTX *pctx, struct s2n_hash_state *hash_state, struct s2n_blob *signature) { POSIX_ENSURE_REF(pctx); POSIX_ENSURE_REF(hash_state); POSIX_ENSURE_REF(signature); uint8_t digest_length = 0; POSIX_GUARD(s2n_hash_digest_size(hash_state->alg, &digest_length)); POSIX_ENSURE_LTE(digest_length, S2N_MAX_DIGEST_LEN); uint8_t digest_out[S2N_MAX_DIGEST_LEN] = { 0 }; POSIX_GUARD(s2n_hash_digest(hash_state, digest_out, digest_length)); size_t signature_size = signature->size; POSIX_GUARD_OSSL(EVP_PKEY_sign(pctx, signature->data, &signature_size, digest_out, digest_length), S2N_ERR_SIGN); POSIX_ENSURE(signature_size <= signature->size, S2N_ERR_SIZE_MISMATCH); signature->size = signature_size; return S2N_SUCCESS; } int s2n_pkey_evp_sign(const struct s2n_pkey *priv, s2n_signature_algorithm sig_alg, struct s2n_hash_state *hash_state, struct s2n_blob *signature) { POSIX_ENSURE_REF(priv); POSIX_ENSURE_REF(hash_state); DEFER_CLEANUP(EVP_PKEY_CTX *pctx = s2n_evp_pkey_ctx_new(priv->pkey, hash_state->alg), EVP_PKEY_CTX_free_pointer); POSIX_ENSURE_REF(pctx); POSIX_GUARD_OSSL(EVP_PKEY_sign_init(pctx), S2N_ERR_PKEY_CTX_INIT); POSIX_GUARD_OSSL(S2N_EVP_PKEY_CTX_set_signature_md(pctx, s2n_hash_alg_to_evp_md(hash_state->alg)), S2N_ERR_PKEY_CTX_INIT); if (sig_alg == S2N_SIGNATURE_RSA_PSS_RSAE || sig_alg == S2N_SIGNATURE_RSA_PSS_PSS) { POSIX_GUARD_OSSL(EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING), S2N_ERR_PKEY_CTX_INIT); POSIX_GUARD_RESULT(s2n_evp_pkey_set_rsa_pss_saltlen(pctx)); } if (s2n_libcrypto_is_awslc_fips()) { POSIX_GUARD(s2n_pkey_evp_digest_and_sign(pctx, sig_alg, hash_state, signature)); } else { POSIX_GUARD(s2n_pkey_evp_digest_then_sign(pctx, hash_state, signature)); } return S2N_SUCCESS; } /* See s2n_evp_digest_and_sign for more information */ static int s2n_pkey_evp_digest_and_verify(EVP_PKEY_CTX *pctx, s2n_signature_algorithm sig_alg, struct s2n_hash_state *hash_state, struct s2n_blob *signature) { POSIX_ENSURE_REF(pctx); POSIX_ENSURE_REF(hash_state); POSIX_ENSURE_REF(signature); /* See digest-and-sign requirements */ POSIX_ENSURE(!s2n_hash_use_custom_md5_sha1(), S2N_ERR_SAFETY); POSIX_ENSURE(s2n_libcrypto_is_awslc_fips(), S2N_ERR_SAFETY); EVP_MD_CTX *ctx = hash_state->digest.high_level.evp.ctx; POSIX_ENSURE_REF(ctx); POSIX_GUARD_RESULT(s2n_evp_md_ctx_set_pkey_ctx(ctx, pctx)); POSIX_GUARD_OSSL(EVP_DigestVerifyFinal(ctx, signature->data, signature->size), S2N_ERR_VERIFY_SIGNATURE); POSIX_GUARD_RESULT(s2n_evp_md_ctx_set_pkey_ctx(ctx, NULL)); return S2N_SUCCESS; } /* See s2n_evp_digest_then_sign for more information */ static int s2n_pkey_evp_digest_then_verify(EVP_PKEY_CTX *pctx, struct s2n_hash_state *hash_state, struct s2n_blob *signature) { POSIX_ENSURE_REF(pctx); POSIX_ENSURE_REF(hash_state); POSIX_ENSURE_REF(signature); uint8_t digest_length = 0; POSIX_GUARD(s2n_hash_digest_size(hash_state->alg, &digest_length)); POSIX_ENSURE_LTE(digest_length, S2N_MAX_DIGEST_LEN); uint8_t digest_out[S2N_MAX_DIGEST_LEN] = { 0 }; POSIX_GUARD(s2n_hash_digest(hash_state, digest_out, digest_length)); POSIX_GUARD_OSSL(EVP_PKEY_verify(pctx, signature->data, signature->size, digest_out, digest_length), S2N_ERR_VERIFY_SIGNATURE); return S2N_SUCCESS; } int s2n_pkey_evp_verify(const struct s2n_pkey *pub, s2n_signature_algorithm sig_alg, struct s2n_hash_state *hash_state, struct s2n_blob *signature) { POSIX_ENSURE_REF(pub); POSIX_ENSURE_REF(hash_state); POSIX_ENSURE_REF(signature); POSIX_GUARD_RESULT(s2n_pkey_evp_validate_sig_alg(pub, sig_alg)); DEFER_CLEANUP(EVP_PKEY_CTX *pctx = s2n_evp_pkey_ctx_new(pub->pkey, hash_state->alg), EVP_PKEY_CTX_free_pointer); POSIX_ENSURE_REF(pctx); POSIX_GUARD_OSSL(EVP_PKEY_verify_init(pctx), S2N_ERR_PKEY_CTX_INIT); POSIX_GUARD_OSSL(S2N_EVP_PKEY_CTX_set_signature_md(pctx, s2n_hash_alg_to_evp_md(hash_state->alg)), S2N_ERR_PKEY_CTX_INIT); if (sig_alg == S2N_SIGNATURE_RSA_PSS_RSAE || sig_alg == S2N_SIGNATURE_RSA_PSS_PSS) { POSIX_GUARD_OSSL(EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING), S2N_ERR_PKEY_CTX_INIT); POSIX_GUARD_RESULT(s2n_evp_pkey_set_rsa_pss_saltlen(pctx)); } if (s2n_libcrypto_is_awslc_fips()) { POSIX_GUARD(s2n_pkey_evp_digest_and_verify(pctx, sig_alg, hash_state, signature)); } else { POSIX_GUARD(s2n_pkey_evp_digest_then_verify(pctx, hash_state, signature)); } return S2N_SUCCESS; } S2N_RESULT s2n_pkey_evp_size(const struct s2n_pkey *pkey, uint32_t *size_out) { RESULT_ENSURE_REF(pkey); RESULT_ENSURE_REF(pkey->pkey); RESULT_ENSURE_REF(size_out); const int size = EVP_PKEY_size(pkey->pkey); RESULT_ENSURE_GT(size, 0); *size_out = size; return S2N_RESULT_OK; } int s2n_pkey_evp_encrypt(const struct s2n_pkey *key, struct s2n_blob *in, struct s2n_blob *out) { POSIX_ENSURE_REF(key); POSIX_ENSURE_REF(in); POSIX_ENSURE_REF(out); POSIX_ENSURE_REF(key->pkey); s2n_pkey_type type = 0; POSIX_GUARD_RESULT(s2n_pkey_get_type(key->pkey, &type)); POSIX_ENSURE(type == S2N_PKEY_TYPE_RSA, S2N_ERR_UNIMPLEMENTED); DEFER_CLEANUP(EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new(key->pkey, NULL), EVP_PKEY_CTX_free_pointer); POSIX_ENSURE_REF(pctx); POSIX_GUARD_OSSL(EVP_PKEY_encrypt_init(pctx), S2N_ERR_PKEY_CTX_INIT); POSIX_GUARD_OSSL(EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PADDING), S2N_ERR_PKEY_CTX_INIT); size_t out_size = out->size; POSIX_GUARD_OSSL(EVP_PKEY_encrypt(pctx, out->data, &out_size, in->data, in->size), S2N_ERR_ENCRYPT); POSIX_ENSURE(out_size == out->size, S2N_ERR_SIZE_MISMATCH); return S2N_SUCCESS; } int s2n_pkey_evp_decrypt(const struct s2n_pkey *key, struct s2n_blob *in, struct s2n_blob *out) { POSIX_ENSURE_REF(key); POSIX_ENSURE_REF(in); POSIX_ENSURE_REF(out); POSIX_ENSURE_REF(key->pkey); s2n_pkey_type type = 0; POSIX_GUARD_RESULT(s2n_pkey_get_type(key->pkey, &type)); POSIX_ENSURE(type == S2N_PKEY_TYPE_RSA, S2N_ERR_UNIMPLEMENTED); uint32_t expected_size = 0; POSIX_GUARD_RESULT(s2n_pkey_size(key, &expected_size)); /* RSA decryption requires more output memory than the size of the final decrypted message */ struct s2n_blob buffer = { 0 }; uint8_t buffer_bytes[4096] = { 0 }; POSIX_GUARD(s2n_blob_init(&buffer, buffer_bytes, sizeof(buffer_bytes))); POSIX_ENSURE(out->size <= buffer.size, S2N_ERR_NOMEM); POSIX_ENSURE(expected_size <= buffer.size, S2N_ERR_NOMEM); DEFER_CLEANUP(EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new(key->pkey, NULL), EVP_PKEY_CTX_free_pointer); POSIX_ENSURE_REF(pctx); POSIX_GUARD_OSSL(EVP_PKEY_decrypt_init(pctx), S2N_ERR_PKEY_CTX_INIT); /* The padding is actually RSA_PKCS1_PADDING, but we'll handle the padding later */ POSIX_GUARD_OSSL(EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_NO_PADDING), S2N_ERR_PKEY_CTX_INIT); size_t out_size = buffer.size; POSIX_GUARD_OSSL(EVP_PKEY_decrypt(pctx, buffer.data, &out_size, in->data, in->size), S2N_ERR_DECRYPT); POSIX_ENSURE(out_size == expected_size, S2N_ERR_SIZE_MISMATCH); /* Handle padding in constant time to avoid Bleichenbacher oracles. * If the padding is wrong, we return random output rather than failing. * That ensures that padding failures are treated the same as wrong outputs. */ POSIX_GUARD_RESULT(s2n_get_public_random_data(out)); s2n_constant_time_pkcs1_unpad_or_dont(out->data, buffer.data, out_size, out->size); return S2N_SUCCESS; } S2N_RESULT s2n_pkey_evp_init(struct s2n_pkey *pkey) { RESULT_ENSURE_REF(pkey); pkey->size = &s2n_pkey_evp_size; pkey->sign = &s2n_pkey_evp_sign; pkey->verify = &s2n_pkey_evp_verify; pkey->encrypt = s2n_pkey_evp_encrypt; pkey->decrypt = s2n_pkey_evp_decrypt; return S2N_RESULT_OK; }