tls/s2n_prf.c (626 lines of code) (raw):

/* * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). * You may not use this file except in compliance with the License. * A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either * express or implied. See the License for the specific language governing * permissions and limitations under the License. */ #include "tls/s2n_prf.h" #include <openssl/hmac.h> #include <openssl/md5.h> #include <openssl/sha.h> #include <string.h> #include <sys/param.h> #include "crypto/s2n_fips.h" #include "crypto/s2n_hash.h" #include "crypto/s2n_hmac.h" #include "crypto/s2n_prf_libcrypto.h" #include "error/s2n_errno.h" #include "stuffer/s2n_stuffer.h" #include "tls/s2n_cipher_suites.h" #include "tls/s2n_connection.h" #include "tls/s2n_crypto_constants.h" #include "tls/s2n_tls.h" #include "utils/s2n_blob.h" #include "utils/s2n_mem.h" #include "utils/s2n_safety.h" /* The s2n p_hash implementation is abstracted to allow for separate implementations. * Currently the only implementation uses s2n-tls's custom HMAC implementation. */ struct s2n_p_hash_hmac { int (*alloc)(struct s2n_prf_working_space *ws); int (*init)(struct s2n_prf_working_space *ws, s2n_hmac_algorithm alg, struct s2n_blob *secret); int (*update)(struct s2n_prf_working_space *ws, const void *data, uint32_t size); int (*final)(struct s2n_prf_working_space *ws, void *digest, uint32_t size); int (*reset)(struct s2n_prf_working_space *ws); int (*cleanup)(struct s2n_prf_working_space *ws); int (*free)(struct s2n_prf_working_space *ws); }; S2N_RESULT s2n_prf_get_digest_for_ems(struct s2n_connection *conn, struct s2n_blob *message, s2n_hash_algorithm hash_alg, struct s2n_blob *output); S2N_RESULT s2n_prf_tls_extended_master_secret(struct s2n_connection *conn, struct s2n_blob *premaster_secret, struct s2n_blob *session_hash, struct s2n_blob *sha1_hash); S2N_RESULT s2n_key_material_init(struct s2n_key_material *key_material, struct s2n_connection *conn) { RESULT_ENSURE_REF(key_material); RESULT_ENSURE_REF(conn); RESULT_ENSURE_REF(conn->secure); RESULT_ENSURE_REF(conn->secure->cipher_suite); RESULT_ENSURE_REF(conn->secure->cipher_suite->record_alg); const struct s2n_cipher *cipher = conn->secure->cipher_suite->record_alg->cipher; RESULT_ENSURE_REF(cipher); uint8_t mac_size = 0; uint32_t key_size = 0; uint32_t iv_size = 0; /* MAC size */ if (cipher->type == S2N_COMPOSITE) { mac_size = cipher->io.comp.mac_key_size; } else { RESULT_GUARD_POSIX(s2n_hmac_digest_size(conn->secure->cipher_suite->record_alg->hmac_alg, &mac_size)); } /* KEY size */ key_size = cipher->key_material_size; /* Only AEAD ciphers have implicit IVs for TLS >= 1.1 */ if (conn->actual_protocol_version <= S2N_TLS10 || cipher->type == S2N_AEAD) { /* IV size */ switch (cipher->type) { case S2N_AEAD: iv_size = cipher->io.aead.fixed_iv_size; break; case S2N_CBC: iv_size = cipher->io.cbc.block_size; break; case S2N_COMPOSITE: iv_size = cipher->io.comp.block_size; break; /* No-op for stream ciphers */ default: break; } } struct s2n_stuffer key_material_stuffer = { 0 }; struct s2n_blob key_material_blob = { 0 }; RESULT_GUARD_POSIX(s2n_blob_init(&key_material_blob, key_material->key_block, sizeof(key_material->key_block))); RESULT_GUARD_POSIX(s2n_stuffer_init_written(&key_material_stuffer, &key_material_blob)); /* initialize key_material blobs; incrementing ptr to point to the next slice of memory */ uint8_t *ptr = NULL; /* MAC */ ptr = s2n_stuffer_raw_read(&key_material_stuffer, mac_size); RESULT_ENSURE_REF(ptr); RESULT_GUARD_POSIX(s2n_blob_init(&key_material->client_mac, ptr, mac_size)); ptr = s2n_stuffer_raw_read(&key_material_stuffer, mac_size); RESULT_ENSURE_REF(ptr); RESULT_GUARD_POSIX(s2n_blob_init(&key_material->server_mac, ptr, mac_size)); /* KEY */ ptr = s2n_stuffer_raw_read(&key_material_stuffer, key_size); RESULT_ENSURE_REF(ptr); RESULT_GUARD_POSIX(s2n_blob_init(&key_material->client_key, ptr, key_size)); ptr = s2n_stuffer_raw_read(&key_material_stuffer, key_size); RESULT_ENSURE_REF(ptr); RESULT_GUARD_POSIX(s2n_blob_init(&key_material->server_key, ptr, key_size)); /* IV */ ptr = s2n_stuffer_raw_read(&key_material_stuffer, iv_size); RESULT_ENSURE_REF(ptr); RESULT_GUARD_POSIX(s2n_blob_init(&key_material->client_iv, ptr, iv_size)); ptr = s2n_stuffer_raw_read(&key_material_stuffer, iv_size); RESULT_ENSURE_REF(ptr); RESULT_GUARD_POSIX(s2n_blob_init(&key_material->server_iv, ptr, iv_size)); return S2N_RESULT_OK; } static int s2n_prf_sslv3(struct s2n_connection *conn, struct s2n_blob *secret, struct s2n_blob *seed_a, struct s2n_blob *seed_b, struct s2n_blob *seed_c, struct s2n_blob *out) { POSIX_ENSURE_REF(conn); POSIX_ENSURE_REF(conn->handshake.hashes); struct s2n_hash_state *workspace = &conn->handshake.hashes->hash_workspace; uint32_t outputlen = out->size; uint8_t *output = out->data; uint8_t iteration = 1; uint8_t md5_digest[MD5_DIGEST_LENGTH] = { 0 }, sha_digest[SHA_DIGEST_LENGTH] = { 0 }; uint8_t A = 'A'; while (outputlen) { struct s2n_hash_state *sha1 = workspace; POSIX_GUARD(s2n_hash_reset(sha1)); POSIX_GUARD(s2n_hash_init(sha1, S2N_HASH_SHA1)); for (int i = 0; i < iteration; i++) { POSIX_GUARD(s2n_hash_update(sha1, &A, 1)); } POSIX_GUARD(s2n_hash_update(sha1, secret->data, secret->size)); POSIX_GUARD(s2n_hash_update(sha1, seed_a->data, seed_a->size)); if (seed_b) { POSIX_GUARD(s2n_hash_update(sha1, seed_b->data, seed_b->size)); if (seed_c) { POSIX_GUARD(s2n_hash_update(sha1, seed_c->data, seed_c->size)); } } POSIX_GUARD(s2n_hash_digest(sha1, sha_digest, sizeof(sha_digest))); struct s2n_hash_state *md5 = workspace; POSIX_GUARD(s2n_hash_reset(md5)); POSIX_GUARD(s2n_hash_init(md5, S2N_HASH_MD5)); POSIX_GUARD(s2n_hash_update(md5, secret->data, secret->size)); POSIX_GUARD(s2n_hash_update(md5, sha_digest, sizeof(sha_digest))); POSIX_GUARD(s2n_hash_digest(md5, md5_digest, sizeof(md5_digest))); uint32_t bytes_to_copy = MIN(outputlen, sizeof(md5_digest)); POSIX_CHECKED_MEMCPY(output, md5_digest, bytes_to_copy); outputlen -= bytes_to_copy; output += bytes_to_copy; /* Increment the letter */ A++; iteration++; } return 0; } static int s2n_hmac_p_hash_new(struct s2n_prf_working_space *ws) { POSIX_GUARD(s2n_hmac_new(&ws->p_hash.s2n_hmac)); return s2n_hmac_init(&ws->p_hash.s2n_hmac, S2N_HMAC_NONE, NULL, 0); } static int s2n_hmac_p_hash_init(struct s2n_prf_working_space *ws, s2n_hmac_algorithm alg, struct s2n_blob *secret) { return s2n_hmac_init(&ws->p_hash.s2n_hmac, alg, secret->data, secret->size); } static int s2n_hmac_p_hash_update(struct s2n_prf_working_space *ws, const void *data, uint32_t size) { return s2n_hmac_update(&ws->p_hash.s2n_hmac, data, size); } static int s2n_hmac_p_hash_digest(struct s2n_prf_working_space *ws, void *digest, uint32_t size) { return s2n_hmac_digest(&ws->p_hash.s2n_hmac, digest, size); } static int s2n_hmac_p_hash_reset(struct s2n_prf_working_space *ws) { /* If we actually initialized s2n_hmac, wipe it. * A valid, initialized s2n_hmac_state will have a valid block size. */ if (ws->p_hash.s2n_hmac.hash_block_size != 0) { return s2n_hmac_reset(&ws->p_hash.s2n_hmac); } return S2N_SUCCESS; } static int s2n_hmac_p_hash_cleanup(struct s2n_prf_working_space *ws) { return s2n_hmac_p_hash_reset(ws); } static int s2n_hmac_p_hash_free(struct s2n_prf_working_space *ws) { return s2n_hmac_free(&ws->p_hash.s2n_hmac); } static const struct s2n_p_hash_hmac s2n_internal_p_hash_hmac = { .alloc = &s2n_hmac_p_hash_new, .init = &s2n_hmac_p_hash_init, .update = &s2n_hmac_p_hash_update, .final = &s2n_hmac_p_hash_digest, .reset = &s2n_hmac_p_hash_reset, .cleanup = &s2n_hmac_p_hash_cleanup, .free = &s2n_hmac_p_hash_free, }; /* * For now, use the internal s2n-tls hmac abstraction. * However, that is a custom implementation of hmac built on hashes. * Ideally we should stop using our custom implementation here and switch * to using a libcrypto implementation. Unfortunately, what each libcrypto * can support varies a lot for HMACs. * * For historical reference, there used to be two other hmac implementations: * https://github.com/aws/s2n-tls/blob/711ee0df658cd7c44088cf7a1b20a9f3cf5296d6/tls/s2n_prf.c#L174-L337 * Both implementations have compatibility issues with one or more libcryptos. */ const struct s2n_p_hash_hmac *s2n_get_hmac_implementation() { return &s2n_internal_p_hash_hmac; } static int s2n_p_hash(struct s2n_prf_working_space *ws, s2n_hmac_algorithm alg, struct s2n_blob *secret, struct s2n_blob *label, struct s2n_blob *seed_a, struct s2n_blob *seed_b, struct s2n_blob *seed_c, struct s2n_blob *out) { uint8_t digest_size = 0; POSIX_GUARD(s2n_hmac_digest_size(alg, &digest_size)); const struct s2n_p_hash_hmac *hmac = s2n_get_hmac_implementation(); POSIX_ENSURE_REF(hmac); /* First compute hmac(secret + A(0)) */ POSIX_GUARD(hmac->init(ws, alg, secret)); POSIX_GUARD(hmac->update(ws, label->data, label->size)); POSIX_GUARD(hmac->update(ws, seed_a->data, seed_a->size)); if (seed_b) { POSIX_GUARD(hmac->update(ws, seed_b->data, seed_b->size)); if (seed_c) { POSIX_GUARD(hmac->update(ws, seed_c->data, seed_c->size)); } } POSIX_GUARD(hmac->final(ws, ws->digest0, digest_size)); uint32_t outputlen = out->size; uint8_t *output = out->data; while (outputlen) { /* Now compute hmac(secret + A(N - 1) + seed) */ POSIX_GUARD(hmac->reset(ws)); POSIX_GUARD(hmac->update(ws, ws->digest0, digest_size)); /* Add the label + seed and compute this round's A */ POSIX_GUARD(hmac->update(ws, label->data, label->size)); POSIX_GUARD(hmac->update(ws, seed_a->data, seed_a->size)); if (seed_b) { POSIX_GUARD(hmac->update(ws, seed_b->data, seed_b->size)); if (seed_c) { POSIX_GUARD(hmac->update(ws, seed_c->data, seed_c->size)); } } POSIX_GUARD(hmac->final(ws, ws->digest1, digest_size)); uint32_t bytes_to_xor = MIN(outputlen, digest_size); for (size_t i = 0; i < bytes_to_xor; i++) { *output ^= ws->digest1[i]; output++; outputlen--; } /* Stash a digest of A(N), in A(N), for the next round */ POSIX_GUARD(hmac->reset(ws)); POSIX_GUARD(hmac->update(ws, ws->digest0, digest_size)); POSIX_GUARD(hmac->final(ws, ws->digest0, digest_size)); } POSIX_GUARD(hmac->cleanup(ws)); return 0; } S2N_RESULT s2n_prf_new(struct s2n_connection *conn) { RESULT_ENSURE_REF(conn); RESULT_ENSURE_EQ(conn->prf_space, NULL); DEFER_CLEANUP(struct s2n_blob mem = { 0 }, s2n_free); RESULT_GUARD_POSIX(s2n_realloc(&mem, sizeof(struct s2n_prf_working_space))); RESULT_GUARD_POSIX(s2n_blob_zero(&mem)); conn->prf_space = (struct s2n_prf_working_space *) (void *) mem.data; ZERO_TO_DISABLE_DEFER_CLEANUP(mem); /* Allocate the hmac state */ const struct s2n_p_hash_hmac *hmac_impl = s2n_get_hmac_implementation(); RESULT_ENSURE_REF(hmac_impl); RESULT_GUARD_POSIX(hmac_impl->alloc(conn->prf_space)); return S2N_RESULT_OK; } S2N_RESULT s2n_prf_wipe(struct s2n_connection *conn) { RESULT_ENSURE_REF(conn); RESULT_ENSURE_REF(conn->prf_space); const struct s2n_p_hash_hmac *hmac_impl = s2n_get_hmac_implementation(); RESULT_ENSURE_REF(hmac_impl); RESULT_GUARD_POSIX(hmac_impl->reset(conn->prf_space)); return S2N_RESULT_OK; } S2N_RESULT s2n_prf_free(struct s2n_connection *conn) { RESULT_ENSURE_REF(conn); if (conn->prf_space == NULL) { return S2N_RESULT_OK; } const struct s2n_p_hash_hmac *hmac_impl = s2n_get_hmac_implementation(); RESULT_ENSURE_REF(hmac_impl); RESULT_GUARD_POSIX(hmac_impl->free(conn->prf_space)); RESULT_GUARD_POSIX(s2n_free_object((uint8_t **) &conn->prf_space, sizeof(struct s2n_prf_working_space))); return S2N_RESULT_OK; } S2N_RESULT s2n_prf_custom(struct s2n_connection *conn, struct s2n_blob *secret, struct s2n_blob *label, struct s2n_blob *seed_a, struct s2n_blob *seed_b, struct s2n_blob *seed_c, struct s2n_blob *out) { /* We zero the out blob because p_hash works by XOR'ing with the existing * buffer. This is a little convoluted but means we can avoid dynamic memory * allocation. When we call p_hash once (in the TLS1.2 case) it will produce * the right values. When we call it twice in the regular case, the two * outputs will be XORd just ass the TLS 1.0 and 1.1 RFCs require. */ RESULT_GUARD_POSIX(s2n_blob_zero(out)); if (conn->actual_protocol_version == S2N_TLS12) { RESULT_GUARD_POSIX(s2n_p_hash(conn->prf_space, conn->secure->cipher_suite->prf_alg, secret, label, seed_a, seed_b, seed_c, out)); return S2N_RESULT_OK; } struct s2n_blob half_secret = { 0 }; RESULT_GUARD_POSIX(s2n_blob_init(&half_secret, secret->data, (secret->size + 1) / 2)); RESULT_GUARD_POSIX(s2n_p_hash(conn->prf_space, S2N_HMAC_MD5, &half_secret, label, seed_a, seed_b, seed_c, out)); half_secret.data += secret->size - half_secret.size; RESULT_GUARD_POSIX(s2n_p_hash(conn->prf_space, S2N_HMAC_SHA1, &half_secret, label, seed_a, seed_b, seed_c, out)); return S2N_RESULT_OK; } int s2n_prf(struct s2n_connection *conn, struct s2n_blob *secret, struct s2n_blob *label, struct s2n_blob *seed_a, struct s2n_blob *seed_b, struct s2n_blob *seed_c, struct s2n_blob *out) { POSIX_ENSURE_REF(conn); POSIX_ENSURE_REF(conn->secure); POSIX_ENSURE_REF(conn->secure->cipher_suite); POSIX_ENSURE_REF(conn->prf_space); POSIX_ENSURE_REF(secret); POSIX_ENSURE_REF(label); POSIX_ENSURE_REF(out); /* seed_a is always required, seed_b is optional, if seed_c is provided seed_b must also be provided */ POSIX_ENSURE(seed_a != NULL, S2N_ERR_PRF_INVALID_SEED); POSIX_ENSURE(S2N_IMPLIES(seed_c != NULL, seed_b != NULL), S2N_ERR_PRF_INVALID_SEED); if (conn->actual_protocol_version == S2N_SSLv3) { POSIX_GUARD(s2n_prf_sslv3(conn, secret, seed_a, seed_b, seed_c, out)); return S2N_SUCCESS; } /* By default, s2n-tls uses a custom PRF implementation. When operating in FIPS mode, the * FIPS-validated libcrypto implementation is used instead, if an implementation is provided. */ if (s2n_is_in_fips_mode()) { POSIX_GUARD_RESULT(s2n_prf_libcrypto(conn, secret, label, seed_a, seed_b, seed_c, out)); return S2N_SUCCESS; } POSIX_GUARD_RESULT(s2n_prf_custom(conn, secret, label, seed_a, seed_b, seed_c, out)); return S2N_SUCCESS; } int s2n_prf_tls_master_secret(struct s2n_connection *conn, struct s2n_blob *premaster_secret) { POSIX_ENSURE_REF(conn); struct s2n_blob client_random = { 0 }; POSIX_GUARD(s2n_blob_init(&client_random, conn->handshake_params.client_random, sizeof(conn->handshake_params.client_random))); struct s2n_blob server_random = { 0 }; POSIX_GUARD(s2n_blob_init(&server_random, conn->handshake_params.server_random, sizeof(conn->handshake_params.server_random))); struct s2n_blob master_secret = { 0 }; POSIX_GUARD(s2n_blob_init(&master_secret, conn->secrets.version.tls12.master_secret, sizeof(conn->secrets.version.tls12.master_secret))); uint8_t master_secret_label[] = "master secret"; struct s2n_blob label = { 0 }; POSIX_GUARD(s2n_blob_init(&label, master_secret_label, sizeof(master_secret_label) - 1)); return s2n_prf(conn, premaster_secret, &label, &client_random, &server_random, NULL, &master_secret); } int s2n_prf_hybrid_master_secret(struct s2n_connection *conn, struct s2n_blob *premaster_secret) { POSIX_ENSURE_REF(conn); struct s2n_blob client_random = { 0 }; POSIX_GUARD(s2n_blob_init(&client_random, conn->handshake_params.client_random, sizeof(conn->handshake_params.client_random))); struct s2n_blob server_random = { 0 }; POSIX_GUARD(s2n_blob_init(&server_random, conn->handshake_params.server_random, sizeof(conn->handshake_params.server_random))); struct s2n_blob master_secret = { 0 }; POSIX_GUARD(s2n_blob_init(&master_secret, conn->secrets.version.tls12.master_secret, sizeof(conn->secrets.version.tls12.master_secret))); uint8_t master_secret_label[] = "hybrid master secret"; struct s2n_blob label = { 0 }; POSIX_GUARD(s2n_blob_init(&label, master_secret_label, sizeof(master_secret_label) - 1)); return s2n_prf(conn, premaster_secret, &label, &client_random, &server_random, &conn->kex_params.client_key_exchange_message, &master_secret); } int s2n_prf_calculate_master_secret(struct s2n_connection *conn, struct s2n_blob *premaster_secret) { POSIX_ENSURE_REF(conn); POSIX_ENSURE_REF(conn->secure); POSIX_ENSURE_EQ(s2n_conn_get_current_message_type(conn), CLIENT_KEY); if (!conn->ems_negotiated) { POSIX_GUARD(s2n_prf_tls_master_secret(conn, premaster_secret)); return S2N_SUCCESS; } /* Only the client writes the Client Key Exchange message */ if (conn->mode == S2N_CLIENT) { POSIX_GUARD(s2n_handshake_finish_header(&conn->handshake.io)); } struct s2n_stuffer client_key_message = conn->handshake.io; POSIX_GUARD(s2n_stuffer_reread(&client_key_message)); uint32_t client_key_message_size = s2n_stuffer_data_available(&client_key_message); struct s2n_blob client_key_blob = { 0 }; POSIX_GUARD(s2n_blob_init(&client_key_blob, client_key_message.blob.data, client_key_message_size)); uint8_t data[S2N_MAX_DIGEST_LEN] = { 0 }; struct s2n_blob digest = { 0 }; POSIX_GUARD(s2n_blob_init(&digest, data, sizeof(data))); if (conn->actual_protocol_version < S2N_TLS12) { uint8_t sha1_data[S2N_MAX_DIGEST_LEN] = { 0 }; struct s2n_blob sha1_digest = { 0 }; POSIX_GUARD(s2n_blob_init(&sha1_digest, sha1_data, sizeof(sha1_data))); POSIX_GUARD_RESULT(s2n_prf_get_digest_for_ems(conn, &client_key_blob, S2N_HASH_MD5, &digest)); POSIX_GUARD_RESULT(s2n_prf_get_digest_for_ems(conn, &client_key_blob, S2N_HASH_SHA1, &sha1_digest)); POSIX_GUARD_RESULT(s2n_prf_tls_extended_master_secret(conn, premaster_secret, &digest, &sha1_digest)); } else { s2n_hmac_algorithm prf_alg = conn->secure->cipher_suite->prf_alg; s2n_hash_algorithm hash_alg = 0; POSIX_GUARD(s2n_hmac_hash_alg(prf_alg, &hash_alg)); POSIX_GUARD_RESULT(s2n_prf_get_digest_for_ems(conn, &client_key_blob, hash_alg, &digest)); POSIX_GUARD_RESULT(s2n_prf_tls_extended_master_secret(conn, premaster_secret, &digest, NULL)); } return S2N_SUCCESS; } /** *= https://www.rfc-editor.org/rfc/rfc7627#section-4 *# When the extended master secret extension is negotiated in a full *# handshake, the "master_secret" is computed as *# *# master_secret = PRF(pre_master_secret, "extended master secret", *# session_hash) *# [0..47]; */ S2N_RESULT s2n_prf_tls_extended_master_secret(struct s2n_connection *conn, struct s2n_blob *premaster_secret, struct s2n_blob *session_hash, struct s2n_blob *sha1_hash) { RESULT_ENSURE_REF(conn); struct s2n_blob extended_master_secret = { 0 }; RESULT_GUARD_POSIX(s2n_blob_init(&extended_master_secret, conn->secrets.version.tls12.master_secret, sizeof(conn->secrets.version.tls12.master_secret))); uint8_t extended_master_secret_label[] = "extended master secret"; /* Subtract one from the label size to remove the "\0" */ struct s2n_blob label = { 0 }; RESULT_GUARD_POSIX(s2n_blob_init(&label, extended_master_secret_label, sizeof(extended_master_secret_label) - 1)); RESULT_GUARD_POSIX(s2n_prf(conn, premaster_secret, &label, session_hash, sha1_hash, NULL, &extended_master_secret)); return S2N_RESULT_OK; } S2N_RESULT s2n_prf_get_digest_for_ems(struct s2n_connection *conn, struct s2n_blob *message, s2n_hash_algorithm hash_alg, struct s2n_blob *output) { RESULT_ENSURE_REF(conn); RESULT_ENSURE_REF(conn->handshake.hashes); RESULT_ENSURE_REF(message); RESULT_ENSURE_REF(output); struct s2n_hash_state *hash_state = &conn->handshake.hashes->hash_workspace; RESULT_GUARD(s2n_handshake_copy_hash_state(conn, hash_alg, hash_state)); RESULT_GUARD_POSIX(s2n_hash_update(hash_state, message->data, message->size)); uint8_t digest_size = 0; RESULT_GUARD_POSIX(s2n_hash_digest_size(hash_alg, &digest_size)); RESULT_ENSURE_GTE(output->size, digest_size); RESULT_GUARD_POSIX(s2n_hash_digest(hash_state, output->data, digest_size)); output->size = digest_size; return S2N_RESULT_OK; } static int s2n_prf_sslv3_finished(struct s2n_connection *conn, uint8_t prefix[4], struct s2n_hash_state *hash_workspace, uint8_t *out) { POSIX_ENSURE_REF(conn); POSIX_ENSURE_REF(conn->handshake.hashes); uint8_t xorpad1[48] = { 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36 }; uint8_t xorpad2[48] = { 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c }; uint8_t *md5_digest = out; uint8_t *sha_digest = out + MD5_DIGEST_LENGTH; POSIX_GUARD_RESULT(s2n_handshake_set_finished_len(conn, MD5_DIGEST_LENGTH + SHA_DIGEST_LENGTH)); struct s2n_hash_state *md5 = hash_workspace; POSIX_GUARD(s2n_hash_copy(md5, &conn->handshake.hashes->md5)); POSIX_GUARD(s2n_hash_update(md5, prefix, 4)); POSIX_GUARD(s2n_hash_update(md5, conn->secrets.version.tls12.master_secret, sizeof(conn->secrets.version.tls12.master_secret))); POSIX_GUARD(s2n_hash_update(md5, xorpad1, 48)); POSIX_GUARD(s2n_hash_digest(md5, md5_digest, MD5_DIGEST_LENGTH)); POSIX_GUARD(s2n_hash_reset(md5)); POSIX_GUARD(s2n_hash_update(md5, conn->secrets.version.tls12.master_secret, sizeof(conn->secrets.version.tls12.master_secret))); POSIX_GUARD(s2n_hash_update(md5, xorpad2, 48)); POSIX_GUARD(s2n_hash_update(md5, md5_digest, MD5_DIGEST_LENGTH)); POSIX_GUARD(s2n_hash_digest(md5, md5_digest, MD5_DIGEST_LENGTH)); POSIX_GUARD(s2n_hash_reset(md5)); struct s2n_hash_state *sha1 = hash_workspace; POSIX_GUARD(s2n_hash_copy(sha1, &conn->handshake.hashes->sha1)); POSIX_GUARD(s2n_hash_update(sha1, prefix, 4)); POSIX_GUARD(s2n_hash_update(sha1, conn->secrets.version.tls12.master_secret, sizeof(conn->secrets.version.tls12.master_secret))); POSIX_GUARD(s2n_hash_update(sha1, xorpad1, 40)); POSIX_GUARD(s2n_hash_digest(sha1, sha_digest, SHA_DIGEST_LENGTH)); POSIX_GUARD(s2n_hash_reset(sha1)); POSIX_GUARD(s2n_hash_update(sha1, conn->secrets.version.tls12.master_secret, sizeof(conn->secrets.version.tls12.master_secret))); POSIX_GUARD(s2n_hash_update(sha1, xorpad2, 40)); POSIX_GUARD(s2n_hash_update(sha1, sha_digest, SHA_DIGEST_LENGTH)); POSIX_GUARD(s2n_hash_digest(sha1, sha_digest, SHA_DIGEST_LENGTH)); POSIX_GUARD(s2n_hash_reset(sha1)); return 0; } static int s2n_prf_sslv3_client_finished(struct s2n_connection *conn) { POSIX_ENSURE_REF(conn); POSIX_ENSURE_REF(conn->handshake.hashes); uint8_t prefix[4] = { 0x43, 0x4c, 0x4e, 0x54 }; return s2n_prf_sslv3_finished(conn, prefix, &conn->handshake.hashes->hash_workspace, conn->handshake.client_finished); } static int s2n_prf_sslv3_server_finished(struct s2n_connection *conn) { POSIX_ENSURE_REF(conn); POSIX_ENSURE_REF(conn->handshake.hashes); uint8_t prefix[4] = { 0x53, 0x52, 0x56, 0x52 }; return s2n_prf_sslv3_finished(conn, prefix, &conn->handshake.hashes->hash_workspace, conn->handshake.server_finished); } int s2n_prf_client_finished(struct s2n_connection *conn) { POSIX_ENSURE_REF(conn); POSIX_ENSURE_REF(conn->secure); POSIX_ENSURE_REF(conn->handshake.hashes); struct s2n_blob master_secret, md5, sha; uint8_t md5_digest[MD5_DIGEST_LENGTH]; uint8_t sha_digest[SHA384_DIGEST_LENGTH]; uint8_t client_finished_label[] = "client finished"; struct s2n_blob client_finished = { 0 }; struct s2n_blob label = { 0 }; if (conn->actual_protocol_version == S2N_SSLv3) { return s2n_prf_sslv3_client_finished(conn); } client_finished.data = conn->handshake.client_finished; client_finished.size = S2N_TLS_FINISHED_LEN; POSIX_GUARD_RESULT(s2n_handshake_set_finished_len(conn, client_finished.size)); label.data = client_finished_label; label.size = sizeof(client_finished_label) - 1; master_secret.data = conn->secrets.version.tls12.master_secret; master_secret.size = sizeof(conn->secrets.version.tls12.master_secret); if (conn->actual_protocol_version == S2N_TLS12) { switch (conn->secure->cipher_suite->prf_alg) { case S2N_HMAC_SHA256: POSIX_GUARD(s2n_hash_copy(&conn->handshake.hashes->hash_workspace, &conn->handshake.hashes->sha256)); POSIX_GUARD(s2n_hash_digest(&conn->handshake.hashes->hash_workspace, sha_digest, SHA256_DIGEST_LENGTH)); sha.size = SHA256_DIGEST_LENGTH; break; case S2N_HMAC_SHA384: POSIX_GUARD(s2n_hash_copy(&conn->handshake.hashes->hash_workspace, &conn->handshake.hashes->sha384)); POSIX_GUARD(s2n_hash_digest(&conn->handshake.hashes->hash_workspace, sha_digest, SHA384_DIGEST_LENGTH)); sha.size = SHA384_DIGEST_LENGTH; break; default: POSIX_BAIL(S2N_ERR_PRF_INVALID_ALGORITHM); } sha.data = sha_digest; return s2n_prf(conn, &master_secret, &label, &sha, NULL, NULL, &client_finished); } POSIX_GUARD(s2n_hash_copy(&conn->handshake.hashes->hash_workspace, &conn->handshake.hashes->md5)); POSIX_GUARD(s2n_hash_digest(&conn->handshake.hashes->hash_workspace, md5_digest, MD5_DIGEST_LENGTH)); md5.data = md5_digest; md5.size = MD5_DIGEST_LENGTH; POSIX_GUARD(s2n_hash_copy(&conn->handshake.hashes->hash_workspace, &conn->handshake.hashes->sha1)); POSIX_GUARD(s2n_hash_digest(&conn->handshake.hashes->hash_workspace, sha_digest, SHA_DIGEST_LENGTH)); sha.data = sha_digest; sha.size = SHA_DIGEST_LENGTH; return s2n_prf(conn, &master_secret, &label, &md5, &sha, NULL, &client_finished); } int s2n_prf_server_finished(struct s2n_connection *conn) { POSIX_ENSURE_REF(conn); POSIX_ENSURE_REF(conn->secure); POSIX_ENSURE_REF(conn->handshake.hashes); struct s2n_blob master_secret, md5, sha; uint8_t md5_digest[MD5_DIGEST_LENGTH]; uint8_t sha_digest[SHA384_DIGEST_LENGTH]; uint8_t server_finished_label[] = "server finished"; struct s2n_blob server_finished = { 0 }; struct s2n_blob label = { 0 }; if (conn->actual_protocol_version == S2N_SSLv3) { return s2n_prf_sslv3_server_finished(conn); } server_finished.data = conn->handshake.server_finished; server_finished.size = S2N_TLS_FINISHED_LEN; POSIX_GUARD_RESULT(s2n_handshake_set_finished_len(conn, server_finished.size)); label.data = server_finished_label; label.size = sizeof(server_finished_label) - 1; master_secret.data = conn->secrets.version.tls12.master_secret; master_secret.size = sizeof(conn->secrets.version.tls12.master_secret); if (conn->actual_protocol_version == S2N_TLS12) { switch (conn->secure->cipher_suite->prf_alg) { case S2N_HMAC_SHA256: POSIX_GUARD(s2n_hash_copy(&conn->handshake.hashes->hash_workspace, &conn->handshake.hashes->sha256)); POSIX_GUARD(s2n_hash_digest(&conn->handshake.hashes->hash_workspace, sha_digest, SHA256_DIGEST_LENGTH)); sha.size = SHA256_DIGEST_LENGTH; break; case S2N_HMAC_SHA384: POSIX_GUARD(s2n_hash_copy(&conn->handshake.hashes->hash_workspace, &conn->handshake.hashes->sha384)); POSIX_GUARD(s2n_hash_digest(&conn->handshake.hashes->hash_workspace, sha_digest, SHA384_DIGEST_LENGTH)); sha.size = SHA384_DIGEST_LENGTH; break; default: POSIX_BAIL(S2N_ERR_PRF_INVALID_ALGORITHM); } sha.data = sha_digest; return s2n_prf(conn, &master_secret, &label, &sha, NULL, NULL, &server_finished); } POSIX_GUARD(s2n_hash_copy(&conn->handshake.hashes->hash_workspace, &conn->handshake.hashes->md5)); POSIX_GUARD(s2n_hash_digest(&conn->handshake.hashes->hash_workspace, md5_digest, MD5_DIGEST_LENGTH)); md5.data = md5_digest; md5.size = MD5_DIGEST_LENGTH; POSIX_GUARD(s2n_hash_copy(&conn->handshake.hashes->hash_workspace, &conn->handshake.hashes->sha1)); POSIX_GUARD(s2n_hash_digest(&conn->handshake.hashes->hash_workspace, sha_digest, SHA_DIGEST_LENGTH)); sha.data = sha_digest; sha.size = SHA_DIGEST_LENGTH; return s2n_prf(conn, &master_secret, &label, &md5, &sha, NULL, &server_finished); } static int s2n_prf_make_client_key(struct s2n_connection *conn, struct s2n_key_material *key_material) { POSIX_ENSURE_REF(conn); POSIX_ENSURE_REF(conn->secure); POSIX_ENSURE_REF(conn->secure->cipher_suite); POSIX_ENSURE_REF(conn->secure->cipher_suite->record_alg); const struct s2n_cipher *cipher = conn->secure->cipher_suite->record_alg->cipher; POSIX_ENSURE_REF(cipher); POSIX_ENSURE_REF(cipher->set_encryption_key); POSIX_ENSURE_REF(cipher->set_decryption_key); if (conn->mode == S2N_CLIENT) { POSIX_GUARD_RESULT(cipher->set_encryption_key(&conn->secure->client_key, &key_material->client_key)); } else { POSIX_GUARD_RESULT(cipher->set_decryption_key(&conn->secure->client_key, &key_material->client_key)); } return 0; } static int s2n_prf_make_server_key(struct s2n_connection *conn, struct s2n_key_material *key_material) { POSIX_ENSURE_REF(conn); POSIX_ENSURE_REF(conn->secure); POSIX_ENSURE_REF(conn->secure->cipher_suite); POSIX_ENSURE_REF(conn->secure->cipher_suite->record_alg); const struct s2n_cipher *cipher = conn->secure->cipher_suite->record_alg->cipher; POSIX_ENSURE_REF(cipher); POSIX_ENSURE_REF(cipher->set_encryption_key); POSIX_ENSURE_REF(cipher->set_decryption_key); if (conn->mode == S2N_SERVER) { POSIX_GUARD_RESULT(cipher->set_encryption_key(&conn->secure->server_key, &key_material->server_key)); } else { POSIX_GUARD_RESULT(cipher->set_decryption_key(&conn->secure->server_key, &key_material->server_key)); } return 0; } S2N_RESULT s2n_prf_generate_key_material(struct s2n_connection *conn, struct s2n_key_material *key_material) { RESULT_ENSURE_REF(conn); RESULT_ENSURE_REF(key_material); struct s2n_blob client_random = { 0 }; RESULT_GUARD_POSIX(s2n_blob_init(&client_random, conn->handshake_params.client_random, sizeof(conn->handshake_params.client_random))); struct s2n_blob server_random = { 0 }; RESULT_GUARD_POSIX(s2n_blob_init(&server_random, conn->handshake_params.server_random, sizeof(conn->handshake_params.server_random))); struct s2n_blob master_secret = { 0 }; RESULT_GUARD_POSIX(s2n_blob_init(&master_secret, conn->secrets.version.tls12.master_secret, sizeof(conn->secrets.version.tls12.master_secret))); struct s2n_blob label = { 0 }; uint8_t key_expansion_label[] = "key expansion"; RESULT_GUARD_POSIX(s2n_blob_init(&label, key_expansion_label, sizeof(key_expansion_label) - 1)); RESULT_GUARD(s2n_key_material_init(key_material, conn)); struct s2n_blob prf_out = { 0 }; RESULT_GUARD_POSIX(s2n_blob_init(&prf_out, key_material->key_block, sizeof(key_material->key_block))); RESULT_GUARD_POSIX(s2n_prf(conn, &master_secret, &label, &server_random, &client_random, NULL, &prf_out)); return S2N_RESULT_OK; } int s2n_prf_key_expansion(struct s2n_connection *conn) { POSIX_ENSURE_REF(conn); POSIX_ENSURE_REF(conn->secure); struct s2n_cipher_suite *cipher_suite = conn->secure->cipher_suite; POSIX_ENSURE_REF(cipher_suite); POSIX_ENSURE_REF(cipher_suite->record_alg); const struct s2n_cipher *cipher = cipher_suite->record_alg->cipher; POSIX_ENSURE_REF(cipher); struct s2n_key_material key_material = { 0 }; POSIX_GUARD_RESULT(s2n_prf_generate_key_material(conn, &key_material)); POSIX_ENSURE(cipher_suite->available, S2N_ERR_PRF_INVALID_ALGORITHM); POSIX_GUARD_RESULT(cipher->init(&conn->secure->client_key)); POSIX_GUARD_RESULT(cipher->init(&conn->secure->server_key)); /* Seed the client MAC */ POSIX_GUARD(s2n_hmac_reset(&conn->secure->client_record_mac)); POSIX_GUARD(s2n_hmac_init( &conn->secure->client_record_mac, cipher_suite->record_alg->hmac_alg, key_material.client_mac.data, key_material.client_mac.size)); /* Seed the server MAC */ POSIX_GUARD(s2n_hmac_reset(&conn->secure->server_record_mac)); POSIX_GUARD(s2n_hmac_init( &conn->secure->server_record_mac, conn->secure->cipher_suite->record_alg->hmac_alg, key_material.server_mac.data, key_material.server_mac.size)); /* Make the client key */ POSIX_GUARD(s2n_prf_make_client_key(conn, &key_material)); /* Make the server key */ POSIX_GUARD(s2n_prf_make_server_key(conn, &key_material)); /* Composite CBC does MAC inside the cipher, pass it the MAC key. * Must happen after setting encryption/decryption keys. */ if (cipher->type == S2N_COMPOSITE) { POSIX_GUARD(cipher->io.comp.set_mac_write_key(&conn->secure->client_key, key_material.client_mac.data, key_material.client_mac.size)); POSIX_GUARD(cipher->io.comp.set_mac_write_key(&conn->secure->server_key, key_material.server_mac.data, key_material.server_mac.size)); } /* set IV */ POSIX_ENSURE_EQ(key_material.client_iv.size, key_material.server_iv.size); POSIX_ENSURE_LTE(key_material.client_iv.size, S2N_TLS_MAX_IV_LEN); POSIX_CHECKED_MEMCPY(conn->secure->client_implicit_iv, key_material.client_iv.data, key_material.client_iv.size); POSIX_CHECKED_MEMCPY(conn->secure->server_implicit_iv, key_material.server_iv.data, key_material.server_iv.size); return 0; }