src/sagemaker/mxnet/model.py [156:256]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            model_data, image_uri, role, entry_point, predictor_cls=predictor_cls, **kwargs
        )
        self.model_server_workers = model_server_workers

    def register(
        self,
        content_types: List[Union[str, PipelineVariable]] = None,
        response_types: List[Union[str, PipelineVariable]] = None,
        inference_instances: Optional[List[Union[str, PipelineVariable]]] = None,
        transform_instances: Optional[List[Union[str, PipelineVariable]]] = None,
        model_package_name: Optional[Union[str, PipelineVariable]] = None,
        model_package_group_name: Optional[Union[str, PipelineVariable]] = None,
        image_uri: Optional[Union[str, PipelineVariable]] = None,
        model_metrics: Optional[ModelMetrics] = None,
        metadata_properties: Optional[MetadataProperties] = None,
        marketplace_cert: bool = False,
        approval_status: Optional[Union[str, PipelineVariable]] = None,
        description: Optional[str] = None,
        drift_check_baselines: Optional[DriftCheckBaselines] = None,
        customer_metadata_properties: Optional[Dict[str, Union[str, PipelineVariable]]] = None,
        domain: Optional[Union[str, PipelineVariable]] = None,
        sample_payload_url: Optional[Union[str, PipelineVariable]] = None,
        task: Optional[Union[str, PipelineVariable]] = None,
        framework: Optional[Union[str, PipelineVariable]] = None,
        framework_version: Optional[Union[str, PipelineVariable]] = None,
        nearest_model_name: Optional[Union[str, PipelineVariable]] = None,
        data_input_configuration: Optional[Union[str, PipelineVariable]] = None,
        skip_model_validation: Optional[Union[str, PipelineVariable]] = None,
        source_uri: Optional[Union[str, PipelineVariable]] = None,
        model_card: Optional[Union[ModelPackageModelCard, ModelCard]] = None,
        model_life_cycle: Optional[ModelLifeCycle] = None,
    ):
        """Creates a model package for creating SageMaker models or listing on Marketplace.

        Args:
            content_types (list[str] or list[PipelineVariable]): The supported MIME types for
                the input data.
            response_types (list[str] or list[PipelineVariable]): The supported MIME types for
                the output data.
            inference_instances (list[str] or list[PipelineVariable]): A list of the instance types
                that are used to generate inferences in real-time (default: None).
            transform_instances (list[str] or list[PipelineVariable]): A list of the instance types
                on which a transformation job can be run or on which an endpoint can be deployed
                (default: None).
            model_package_name (str or PipelineVariable): Model Package name, exclusive to
                `model_package_group_name`, using `model_package_name` makes the Model Package
                un-versioned (default: None).
            model_package_group_name (str or PipelineVariable): Model Package Group name, exclusive
                to `model_package_name`, using `model_package_group_name` makes the Model Package
                versioned (default: None).
            image_uri (str or PipelineVariable): Inference image uri for the container. Model class'
                self.image will be used if it is None (default: None).
            model_metrics (ModelMetrics): ModelMetrics object (default: None).
            metadata_properties (MetadataProperties): MetadataProperties (default: None).
            marketplace_cert (bool): A boolean value indicating if the Model Package is certified
                for AWS Marketplace (default: False).
            approval_status (str or PipelineVariable): Model Approval Status, values can be
                "Approved", "Rejected", or "PendingManualApproval"
                (default: "PendingManualApproval").
            description (str): Model Package description (default: None).
            drift_check_baselines (DriftCheckBaselines): DriftCheckBaselines object (default: None).
            customer_metadata_properties (dict[str, str] or dict[str, PipelineVariable]):
                A dictionary of key-value paired metadata properties (default: None).
            domain (str or PipelineVariable): Domain values can be "COMPUTER_VISION",
                "NATURAL_LANGUAGE_PROCESSING", "MACHINE_LEARNING" (default: None).
            sample_payload_url (str or PipelineVariable): The S3 path where the sample payload
                is stored (default: None).
            task (str or PipelineVariable): Task values which are supported by Inference Recommender
                are "FILL_MASK", "IMAGE_CLASSIFICATION", "OBJECT_DETECTION", "TEXT_GENERATION",
                "IMAGE_SEGMENTATION", "CLASSIFICATION", "REGRESSION", "OTHER" (default: None).
            framework (str or PipelineVariable): Machine learning framework of the model package
                container image (default: None).
            framework_version (str or PipelineVariable): Framework version of the Model Package
                Container Image (default: None).
            nearest_model_name (str or PipelineVariable): Name of a pre-trained machine learning
                benchmarked by Amazon SageMaker Inference Recommender (default: None).
            data_input_configuration (str or PipelineVariable): Input object for the model
                (default: None).
            skip_model_validation (str or PipelineVariable): Indicates if you want to skip model
                validation. Values can be "All" or "None" (default: None).
            source_uri (str or PipelineVariable): The URI of the source for the model package
                (default: None).
            model_card (ModeCard or ModelPackageModelCard): document contains qualitative and
                quantitative information about a model (default: None).
            model_life_cycle (ModelLifeCycle): ModelLifeCycle object (default: None).

        Returns:
            A `sagemaker.model.ModelPackage` instance.
        """
        instance_type = inference_instances[0] if inference_instances else None
        self._init_sagemaker_session_if_does_not_exist(instance_type)

        if image_uri:
            self.image_uri = image_uri
        if not self.image_uri:
            self.image_uri = self.serving_image_uri(
                region_name=self.sagemaker_session.boto_session.region_name,
                instance_type=instance_type,
            )
        if not is_pipeline_variable(framework):
            framework = (framework or self._framework_name).upper()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



src/sagemaker/pytorch/model.py [157:258]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            model_data, image_uri, role, entry_point, predictor_cls=predictor_cls, **kwargs
        )

        self.model_server_workers = model_server_workers

    def register(
        self,
        content_types: List[Union[str, PipelineVariable]] = None,
        response_types: List[Union[str, PipelineVariable]] = None,
        inference_instances: Optional[List[Union[str, PipelineVariable]]] = None,
        transform_instances: Optional[List[Union[str, PipelineVariable]]] = None,
        model_package_name: Optional[Union[str, PipelineVariable]] = None,
        model_package_group_name: Optional[Union[str, PipelineVariable]] = None,
        image_uri: Optional[Union[str, PipelineVariable]] = None,
        model_metrics: Optional[ModelMetrics] = None,
        metadata_properties: Optional[MetadataProperties] = None,
        marketplace_cert: bool = False,
        approval_status: Optional[Union[str, PipelineVariable]] = None,
        description: Optional[str] = None,
        drift_check_baselines: Optional[DriftCheckBaselines] = None,
        customer_metadata_properties: Optional[Dict[str, Union[str, PipelineVariable]]] = None,
        domain: Optional[Union[str, PipelineVariable]] = None,
        sample_payload_url: Optional[Union[str, PipelineVariable]] = None,
        task: Optional[Union[str, PipelineVariable]] = None,
        framework: Optional[Union[str, PipelineVariable]] = None,
        framework_version: Optional[Union[str, PipelineVariable]] = None,
        nearest_model_name: Optional[Union[str, PipelineVariable]] = None,
        data_input_configuration: Optional[Union[str, PipelineVariable]] = None,
        skip_model_validation: Optional[Union[str, PipelineVariable]] = None,
        source_uri: Optional[Union[str, PipelineVariable]] = None,
        model_card: Optional[Union[ModelPackageModelCard, ModelCard]] = None,
        model_life_cycle: Optional[ModelLifeCycle] = None,
    ):
        """Creates a model package for creating SageMaker models or listing on Marketplace.

        Args:
            content_types (list[str] or list[PipelineVariable]): The supported MIME types
                for the input data.
            response_types (list[str] or list[PipelineVariable]): The supported MIME types
                for the output data.
            inference_instances (list[str] or list[PipelineVariable]): A list of the
                instance types that are used to generate inferences in real-time (default: None).
            transform_instances (list[str] or list[PipelineVariable]): A list of the
                instance types on which a transformation job can be run or on which an
                endpoint can be deployed (default: None).
            model_package_name (str or PipelineVariable): Model Package name, exclusive to
                `model_package_group_name`, using `model_package_name` makes the Model Package
                un-versioned (default: None).
            model_package_group_name (str or PipelineVariable): Model Package Group name, exclusive
                to `model_package_name`, using `model_package_group_name` makes the Model Package
                versioned (default: None).
            image_uri (str or PipelineVariable): Inference image uri for the container.
                Model class' self.image will be used if it is None (default: None).
            model_metrics (ModelMetrics): ModelMetrics object (default: None).
            metadata_properties (MetadataProperties): MetadataProperties object (default: None).
            marketplace_cert (bool): A boolean value indicating if the Model Package is certified
                for AWS Marketplace (default: False).
            approval_status (str or PipelineVariable): Model Approval Status, values can be
                "Approved", "Rejected", or "PendingManualApproval"
                (default: "PendingManualApproval").
            description (str): Model Package description (default: None).
            drift_check_baselines (DriftCheckBaselines): DriftCheckBaselines object (default: None).
            customer_metadata_properties (dict[str, str] or dict[str, PipelineVariable]):
                A dictionary of key-value paired metadata properties (default: None).
            domain (str or PipelineVariable): Domain values can be "COMPUTER_VISION",
                "NATURAL_LANGUAGE_PROCESSING", "MACHINE_LEARNING" (default: None).
            sample_payload_url (str or PipelineVariable): The S3 path where the sample payload
                is stored (default: None).
            task (str or PipelineVariable): Task values which are supported by Inference Recommender
                are "FILL_MASK", "IMAGE_CLASSIFICATION", "OBJECT_DETECTION", "TEXT_GENERATION",
                "IMAGE_SEGMENTATION", "CLASSIFICATION", "REGRESSION", "OTHER" (default: None).
            framework (str or PipelineVariable): Machine learning framework of the model package
                container image (default: None).
            framework_version (str or PipelineVariable): Framework version of the Model Package
                Container Image (default: None).
            nearest_model_name (str or PipelineVariable): Name of a pre-trained machine learning
                benchmarked by Amazon SageMaker Inference Recommender (default: None).
            data_input_configuration (str or PipelineVariable): Input object for the model
                (default: None).
            skip_model_validation (str or PipelineVariable): Indicates if you want to skip model
                validation. Values can be "All" or "None" (default: None).
            source_uri (str or PipelineVariable): The URI of the source for the model package
                (default: None).
            model_card (ModeCard or ModelPackageModelCard): document contains qualitative and
                quantitative information about a model (default: None).
            model_life_cycle (ModelLifeCycle): ModelLifeCycle object (default: None).

        Returns:
            A `sagemaker.model.ModelPackage` instance.
        """
        instance_type = inference_instances[0] if inference_instances else None
        self._init_sagemaker_session_if_does_not_exist(instance_type)

        if image_uri:
            self.image_uri = image_uri
        if not self.image_uri:
            self.image_uri = self.serving_image_uri(
                region_name=self.sagemaker_session.boto_session.region_name,
                instance_type=instance_type,
            )
        if not is_pipeline_variable(framework):
            framework = (framework or self._framework_name).upper()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



