def _djl_model_builder_deploy_wrapper()

in src/sagemaker/serve/builder/djl_builder.py [0:0]


    def _djl_model_builder_deploy_wrapper(self, *args, **kwargs) -> Type[PredictorBase]:
        """Returns predictor depending on local mode or endpoint mode"""
        timeout = kwargs.get("model_data_download_timeout")
        if timeout:
            self.env_vars.update({"MODEL_LOADING_TIMEOUT": str(timeout)})

        if "mode" in kwargs and kwargs.get("mode") != self.mode:
            overwrite_mode = kwargs.get("mode")
            # mode overwritten by customer during model.deploy()
            logger.warning(
                "Deploying in %s Mode, overriding existing configurations set for %s mode",
                overwrite_mode,
                self.mode,
            )

            if overwrite_mode == Mode.SAGEMAKER_ENDPOINT:
                self.mode = self.pysdk_model.mode = Mode.SAGEMAKER_ENDPOINT
            elif overwrite_mode == Mode.LOCAL_CONTAINER:
                self._prepare_for_mode()
                self.mode = self.pysdk_model.mode = Mode.LOCAL_CONTAINER
            else:
                raise ValueError("Mode %s is not supported!" % overwrite_mode)

        if self.mode == Mode.SAGEMAKER_ENDPOINT:
            if self.nb_instance_type and "instance_type" not in kwargs:
                kwargs.update({"instance_type": self.nb_instance_type})
            elif not self.nb_instance_type and "instance_type" not in kwargs:
                raise ValueError(
                    "Instance type must be provided when deploying " "to SageMaker Endpoint mode."
                )
            else:
                try:
                    tot_gpus = _get_gpu_info(kwargs.get("instance_type"), self.sagemaker_session)
                except Exception:  # pylint: disable=W0703
                    tot_gpus = _get_gpu_info_fallback(kwargs.get("instance_type"))
                default_tensor_parallel_degree = _get_default_tensor_parallel_degree(
                    self.hf_model_config, tot_gpus
                )
                self.pysdk_model.env.update(
                    {"TENSOR_PARALLEL_DEGREE": str(default_tensor_parallel_degree)}
                )

        serializer = self.schema_builder.input_serializer
        deserializer = self.schema_builder._output_deserializer

        if self.mode == Mode.IN_PROCESS:

            predictor = InProcessModePredictor(
                self.modes[str(Mode.IN_PROCESS)], serializer, deserializer
            )

            self.modes[str(Mode.IN_PROCESS)].create_server(
                predictor,
            )
            return predictor

        if self.mode == Mode.LOCAL_CONTAINER:
            timeout = kwargs.get("model_data_download_timeout")

            predictor = DjlLocalModePredictor(
                self.modes[str(Mode.LOCAL_CONTAINER)], serializer, deserializer
            )

            ram_usage_before = _get_ram_usage_mb()
            self.modes[str(Mode.LOCAL_CONTAINER)].create_server(
                self.image_uri,
                timeout if timeout else 1800,
                self.secret_key,
                predictor,
                self.pysdk_model.env,
            )
            ram_usage_after = _get_ram_usage_mb()

            self.ram_usage_model_load = max(ram_usage_after - ram_usage_before, 0)

            return predictor

        if "mode" in kwargs:
            del kwargs["mode"]
        if "role" in kwargs:
            self.pysdk_model.role = kwargs.get("role")
            del kwargs["role"]

        # set model_data to uncompressed s3 dict
        if not _is_optimized(self.pysdk_model):
            self.pysdk_model.model_data, env_vars = self._prepare_for_mode()
            self.env_vars.update(env_vars)
            self.pysdk_model.env.update(self.env_vars)

        # if the weights have been cached via local container mode -> set to offline
        if str(Mode.LOCAL_CONTAINER) in self.modes:
            self.pysdk_model.env.update({"TRANSFORMERS_OFFLINE": "1"})
        else:
            # if has not been built for local container we must use cache
            # that hosting has write access to.
            self.pysdk_model.env["TRANSFORMERS_CACHE"] = "/tmp"
            self.pysdk_model.env["HF_HOME"] = "/tmp"
            self.pysdk_model.env["HUGGINGFACE_HUB_CACHE"] = "/tmp"

        if "endpoint_logging" not in kwargs:
            kwargs["endpoint_logging"] = True

        predictor = self._original_deploy(*args, **kwargs)

        self.pysdk_model.env.update({"TRANSFORMERS_OFFLINE": "0"})

        predictor.serializer = serializer
        predictor.deserializer = deserializer
        return predictor