in src/sagemaker_sklearn_container/serving.py [0:0]
def default_input_fn(input_data, content_type):
"""Takes request data and de-serializes the data into an object for prediction.
When an InvokeEndpoint operation is made against an Endpoint running SageMaker model server,
the model server receives two pieces of information:
- The request Content-Type, for example "application/json"
- The request data, which is at most 5 MB (5 * 1024 * 1024 bytes) in size.
The input_fn is responsible to take the request data and pre-process it before prediction.
Args:
input_data (obj): the request data.
content_type (str): the request Content-Type.
Returns:
(obj): data ready for prediction.
"""
np_array = encoders.decode(input_data, content_type)
return np_array.astype(np.float32) if content_type in content_types.UTF8_TYPES else np_array