def fromModelS3Path()

in sagemaker-spark-sdk/src/main/scala/com/amazonaws/services/sagemaker/sparksdk/SageMakerModel.scala [155:186]


  def fromModelS3Path(modelPath: String,
                      modelImage: String,
                      modelExecutionRoleARN: String,
                      endpointInstanceType: String,
                      endpointInitialInstanceCount : Int,
                      requestRowSerializer: RequestRowSerializer,
                      responseRowDeserializer: ResponseRowDeserializer,
                      modelEnvironmentVariables: Map[String, String] = Map[String, String](),
                      endpointCreationPolicy: EndpointCreationPolicy =
                        EndpointCreationPolicy.CREATE_ON_CONSTRUCT,
                      sagemakerClient : AmazonSageMaker
                        = AmazonSageMakerClientBuilder.defaultClient,
                      prependResultRows : Boolean = true,
                      namePolicy : NamePolicy = new RandomNamePolicy(),
                      uid: String = Identifiable.randomUID("sagemaker")) : SageMakerModel = {
    require(endpointCreationPolicy != EndpointCreationPolicy.DO_NOT_CREATE,
      "Endpoint creation policy must not be DO_NOT_CREATE to create an endpoint from a model path.")

    new SageMakerModel(modelImage = Some(modelImage),
      modelPath = Some(S3DataPath.fromS3URI(modelPath)),
      requestRowSerializer = requestRowSerializer,
      responseRowDeserializer = responseRowDeserializer,
      modelEnvironmentVariables = modelEnvironmentVariables,
      modelExecutionRoleARN = Some(modelExecutionRoleARN),
      endpointCreationPolicy = endpointCreationPolicy,
      endpointInstanceType = Some(endpointInstanceType),
      endpointInitialInstanceCount = Some(endpointInitialInstanceCount),
      sagemakerClient = sagemakerClient,
      prependResultRows = prependResultRows,
      namePolicy = namePolicy,
      uid = uid)
  }