in sagemaker-spark-sdk/src/main/scala/com/amazonaws/services/sagemaker/sparksdk/algorithms/LinearLearnerSageMakerEstimator.scala [58:101]
def getBinaryClassifierModelSelectionCriteria: String = $(binaryClassifierModelSelectionCriteria)
/**
* Applicable if binary_classifier_model_selection_criteria is precision_at_target_recall
* Ignored otherwise. Must be in range (0, 1).
* Default: 0.8.
*/
val targetRecall : DoubleParam = new DoubleParam(this, "target_recall",
"Applicable if binary_classifier_model_selection_criteria is precision_at_target_recall. " +
"Ignored otherwise. Must be in range (0, 1).",
ParamValidators.inRange(0.0, 1.0, false, false))
def getTargetRecall: Double = $(targetRecall)
/**
* Applicable if binary_classifier_model_selection_criteria is recall_at_target_precision
* Ignored otherwise. Must be in range (0, 1).
* Default: 0.8.
*/
val targetPrecision : DoubleParam = new DoubleParam(this, "target_precision",
"Applicable if binary_classifier_model_selection_criteria is recall_at_target_precision. " +
"Ignored otherwise. Must be in range (0, 1).",
ParamValidators.inRange(0.0, 1.0, false, false))
def getTargetPrecision: Double = $(targetPrecision)
/**
* Weight assigned to positive examples when training a binary classifier. The weight of
* negative examples is fixed at 1. If balanced, then a weight will be selected so that errors
* in classifying negative vs. positive examples have equal impact on the training loss.
* If auto, the algorithm will attempt to select the weight that optimizes performance.
* Must be string "auto", "balanced" or float > 0
* Default: 1.0.
*/
val positiveExampleWeightMult : Param[String] = new Param(this, "positive_example_weight_mult",
"Weight assigned to positive examples when training a binary classifier. The weight of" +
"negative examples is fixed at 1. If balanced, then a weight will be selected so that" +
"errors in classifying negative vs. positive examples have equal impact on the training" +
"loss. If auto, the algorithm will attempt to select the weight that optimizes" +
"performance. Must be string 'auto', 'balanced' or float > 0",
inArrayOrAboveParamValidator(Array("auto", "balanced"), 0))
def getPositiveExampleWeightMult: String = $(positiveExampleWeightMult)
}
private[algorithms] trait MultiClassClassifierParams extends LinearLearnerParams {