in benchmarks/horovod-resnet/train_imagenet_resnet_hvd.py [0:0]
def deserialize_image_record(record):
feature_map = {
"image/encoded": tf.FixedLenFeature([], tf.string, ""),
"image/class/label": tf.FixedLenFeature([1], tf.int64, -1),
"image/class/text": tf.FixedLenFeature([], tf.string, ""),
"image/object/bbox/xmin": tf.VarLenFeature(dtype=tf.float32),
"image/object/bbox/ymin": tf.VarLenFeature(dtype=tf.float32),
"image/object/bbox/xmax": tf.VarLenFeature(dtype=tf.float32),
"image/object/bbox/ymax": tf.VarLenFeature(dtype=tf.float32),
}
with tf.name_scope("deserialize_image_record"):
obj = tf.parse_single_example(record, feature_map)
imgdata = obj["image/encoded"]
label = tf.cast(obj["image/class/label"], tf.int32)
bbox = tf.stack(
[obj["image/object/bbox/%s" % x].values for x in ["ymin", "xmin", "ymax", "xmax"]]
)
bbox = tf.transpose(tf.expand_dims(bbox, 0), [0, 2, 1])
text = obj["image/class/text"]
return imgdata, label, bbox, text