in src/sagemaker_training/environment.py [0:0]
def to_env_vars(self):
"""Environment variable representation of the training environment.
Returns:
dict: An instance of dictionary.
"""
env = {
"hosts": self.hosts,
"network_interface_name": self.network_interface_name,
"hps": self.hyperparameters,
"user_entry_point": self.user_entry_point,
"framework_params": self.additional_framework_parameters,
"resource_config": self.resource_config,
"input_data_config": self.input_data_config,
"output_data_dir": self.output_data_dir,
"channels": sorted(self.channel_input_dirs.keys()),
"current_host": self.current_host,
"current_instance_type": self.current_instance_type,
"current_instance_group": self.current_instance_group,
"current_instance_group_hosts": self.current_instance_group_hosts,
"instance_groups": self.instance_groups,
"instance_groups_dict": self.instance_groups_dict,
"distribution_instance_groups": self.distribution_instance_groups,
"is_hetero": self.is_hetero,
"module_name": self.module_name,
"log_level": self.log_level,
"framework_module": self.framework_module,
"input_dir": self.input_dir,
"input_config_dir": self.input_config_dir,
"output_dir": self.output_dir,
"num_cpus": self.num_cpus,
"num_gpus": self.num_gpus,
"num_neurons": self.num_neurons,
"model_dir": self.model_dir,
"module_dir": self.module_dir,
"training_env": dict(self),
"user_args": self.to_cmd_args(),
"output_intermediate_dir": self.output_intermediate_dir,
}
for name, path in self.channel_input_dirs.items():
env["channel_%s" % name] = path
for key, value in self.hyperparameters.items():
env["hp_%s" % key] = value
return mapping.to_env_vars(env)