in distilbert-base-uncased.py [0:0]
def run_inference(model_name, sample_text):
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.to('cuda')
# Tokenize the sample text
inputs = tokenizer(sample_text, return_tensors='pt', truncation=True, padding='max_length', max_length=128)
inputs = {key: value.to('cuda') for key, value in inputs.items()}
# Run inference
model.eval()
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predictions = torch.argmax(logits, dim=-1)
return predictions.cpu().numpy()