core/riot/reference/RiotSha256.c (264 lines of code) (raw):
/*
* Copyright (c) 2000-2001, Aaron D. Gifford
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/******************************************************************************
* Copyright (c) 2014, AllSeen Alliance. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
******************************************************************************/
/*
* Copyright (c) Microsoft Corporation. All rights reserved.
* Licensed under the MIT License. See LICENSE in the project root.
*/
//
// 4-MAY-2015; RIoT adaptation (DennisMa;MSFT).
//
#include "stdint.h"
#include "string.h" // memcpy/memset
#include "include/RiotSha256.h"
#include "riot/riot_core.h"
/*** SHA-256 Machine Architecture Definitions *****************/
/*
* BYTE_ORDER NOTE:
*
* Please make sure that your system defines BYTE_ORDER. If your
* architecture is little-endian, make sure it also defines
* LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
* equivilent.
*
* If your system does not define the above, then you can do so by
* hand like this:
*
* #define LITTLE_ENDIAN 1234
* #define BIG_ENDIAN 4321
*
* And for little-endian machines, add:
*
* #define BYTE_ORDER LITTLE_ENDIAN
*
* Or for big-endian machines:
*
* #define BYTE_ORDER BIG_ENDIAN
*
* The FreeBSD machine this was written on defines BYTE_ORDER
* appropriately by including <sys/types.h> (which in turn includes
* <machine/endian.h> where the appropriate definitions are actually
* made).
*/
#if !defined (BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
#define LITTLE_ENDIAN 1234
#define BIG_ENDIAN 4321
#if HOST_IS_LITTLE_ENDIAN
#define BYTE_ORDER LITTLE_ENDIAN
#else
#define BYTE_ORDER BIG_ENDIAN
#endif
#endif
/*
* Define the followingsha2_* types to types of the correct length on
* the native architecture. Most BSD systems and Linux define u_intXX_t
* types. Machines with very recent ANSI C headers, can use the
* uintXX_t definitions from inttypes.h by defining SHA2_USE_INTTYPES_H
* during compile or in the sha.h header file.
*
* Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
* will need to define these three typedefs below (and the appropriate
* ones in sha.h too) by hand according to their system architecture.
*
* Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
* types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
*/
/*** SHA-256 Length Definitions ***********************/
/* NOTE: Most of these are in sha2.h */
#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
/*** ENDIAN REVERSAL MACROS *******************************************/
#if BYTE_ORDER == LITTLE_ENDIAN
#if !defined (ALIGNED_ACCESS_REQUIRED)
#define REVERSE32(w,x) { \
sha2_word32 tmp = (w); \
tmp = (tmp >> 16) | (tmp << 16); \
(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
}
#else
#define REVERSE32(w,x) { \
sha2_uint8_t *b = (sha2_uint8_t*) &w; \
sha2_word32 tmp = 0; \
tmp = ((sha2_word32)*b++); \
tmp = (tmp << 8) | ((sha2_word32)*b++); \
tmp = (tmp << 8) | ((sha2_word32)*b++); \
tmp = (tmp << 8) | ((sha2_word32)*b++); \
(x) = tmp; \
}
#endif /* ALIGNED_ACCESS_REQUIRED */
#define REVERSE64(w,x) { \
sha2_word64 tmp = (w); \
tmp = (tmp >> 32) | (tmp << 32); \
tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
((tmp & 0x00ff00ff00ff00ffULL) << 8); \
(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
((tmp & 0x0000ffff0000ffffULL) << 16); \
}
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
/*
* Macro for incrementally adding the unsigned 64-bit integer n to the
* unsigned 128-bit integer (represented using a two-element array of
* 64-bit words):
*/
#define ADDINC128(w,n) { \
(w)[0] += (sha2_word64)(n); \
if ((w)[0] < (n)) { \
(w)[1]++; \
} \
}
/*
* Macros for copying blocks of memory and for zeroing out ranges
* of memory. Using these macros makes it easy to switch from
* using memset()/memcpy() and using bzero()/bcopy().
*
* Please define either SHA2_USE_MEMSET_MEMCPY or define
* SHA2_USE_BZERO_BCOPY depending on which function set you
* choose to use:
*/
#if !defined (SHA2_USE_MEMSET_MEMCPY) && !defined (SHA2_USE_BZERO_BCOPY)
/* Default to memset()/memcpy() if no option is specified */
#define SHA2_USE_MEMSET_MEMCPY 1
#endif
#if defined (SHA2_USE_MEMSET_MEMCPY) && defined (SHA2_USE_BZERO_BCOPY)
/* Abort with an error if BOTH options are defined */
#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
#endif
#ifdef SHA2_USE_MEMSET_MEMCPY
#define MEMSET_BZERO(p, l) memset((p), 0, (l))
#define MEMCPY_BCOPY(d, s, l) memcpy((d), (s), (l))
#endif
#ifdef SHA2_USE_BZERO_BCOPY
#define MEMSET_BZERO(p, l) bzero((p), (l))
#define MEMCPY_BCOPY(d, s, l) bcopy((s), (d), (l))
#endif
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
/*
* Bit shifting and rotation (used by the six SHA-XYZ logical functions:
*
* NOTE: The naming of R and S appears backwards here (R is a SHIFT and
* S is a ROTATION) because the SHA-256/384/512 description document
* (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
* same "backwards" definition.
*/
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
#define R(b, x) ((x) >> (b))
/* 32-bit Rotate-right (used in SHA-256): */
#define S32(b, x) (((x) >> (b)) | ((x) << (32 - (b))))
/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
#define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
/* Four of six logical functions used in SHA-256: */
#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
/*** INTERNAL FUNCTION PROTOTYPES *************************************/
/* NOTE: These should not be accessed directly from outside this
* library -- they are intended for private internal visibility/use
* only.
*/
static void SHA256_Transform (RIOT_SHA256_CONTEXT*, const sha2_word32*);
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
/* Hash constant words K for SHA-256: */
static const sha2_word32 K256[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
/* Initial hash value H for SHA-256: */
static const sha2_word32 sha256_initial_hash_value[8] = {
0x6a09e667UL,
0xbb67ae85UL,
0x3c6ef372UL,
0xa54ff53aUL,
0x510e527fUL,
0x9b05688cUL,
0x1f83d9abUL,
0x5be0cd19UL
};
/*
* Constant used by SHA256() functions for converting the
* digest to a readable hexadecimal character string:
*/
//static const char *sha2_hex_digits = "0123456789abcdef";
/*** SHA-256: *********************************************************/
void RIOT_SHA256_Init (RIOT_SHA256_CONTEXT *context)
{
if (context == (RIOT_SHA256_CONTEXT*) 0) {
return;
}
context->magic = HASH_MAGIC_VALUE;
MEMCPY_BCOPY (context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
MEMSET_BZERO (context->buffer, SHA256_BLOCK_LENGTH);
context->bitcount = 0;
}
static void SHA256_Transform (RIOT_SHA256_CONTEXT *context, const sha2_word32 *data)
{
sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
sha2_word32 T1, T2, *W256;
int j;
W256 = (sha2_word32*) context->buffer;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
#if BYTE_ORDER == LITTLE_ENDIAN
/* Copy data while converting to host uint8_t order */
REVERSE32 (*data++, W256[j]);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256 (e) + Ch (e, f, g) + K256[j] + W256[j];
#else /* BYTE_ORDER == LITTLE_ENDIAN */
/* Apply the SHA-256 compression function to update a..h with copy */
T1 = h + Sigma1_256 (e) + Ch (e, f, g) + K256[j] + (W256[j] = *data++);
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
T2 = Sigma0_256 (a) + Maj (a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do {
/* Part of the message block expansion: */
s0 = W256[(j + 1) & 0x0f];
s0 = sigma0_256 (s0);
s1 = W256[(j + 14) & 0x0f];
s1 = sigma1_256 (s1);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256 (e) + Ch (e, f, g) + K256[j] +
(W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0);
T2 = Sigma0_256 (a) + Maj (a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 64);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
void RIOT_SHA256_Update (RIOT_SHA256_CONTEXT *context, const sha2_uint8_t *data, size_t len)
{
unsigned int freespace, usedspace;
if (len == 0) {
/* Calling with no data is valid - we do nothing */
return;
}
/* Sanity check: */
assert (context != (RIOT_SHA256_CONTEXT*) 0 && data != (sha2_uint8_t*) 0 &&
context->magic == HASH_MAGIC_VALUE);
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
freespace = SHA256_BLOCK_LENGTH - usedspace;
if (len >= freespace) {
/* Fill the buffer completely and process it */
MEMCPY_BCOPY (&context->buffer[usedspace], data, freespace);
context->bitcount += freespace << 3;
len -= freespace;
data += freespace;
SHA256_Transform (context, (sha2_word32*) context->buffer);
}
else {
/* The buffer is not yet full */
MEMCPY_BCOPY (&context->buffer[usedspace], data, len);
context->bitcount += len << 3;
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= SHA256_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
SHA256_Transform (context, (sha2_word32*) data);
context->bitcount += SHA256_BLOCK_LENGTH << 3;
len -= SHA256_BLOCK_LENGTH;
data += SHA256_BLOCK_LENGTH;
}
if (len > 0) {
/* There's left-overs, so save 'em */
MEMCPY_BCOPY (context->buffer, data, len);
context->bitcount += len << 3;
}
/* Clean up: */
usedspace = freespace = 0;
}
void RIOT_SHA256_Final (RIOT_SHA256_CONTEXT *context, sha2_uint8_t *digest)
{
sha2_word32 *d = (sha2_word32*) digest;
unsigned int usedspace;
/* Sanity check: */
assert (context != (RIOT_SHA256_CONTEXT*) 0 && context->magic == HASH_MAGIC_VALUE);
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha2_uint8_t*) 0) {
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert FROM host uint8_t order */
REVERSE64 (context->bitcount, context->bitcount);
#endif
if (usedspace > 0) {
/* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
/* Set-up for the last transform: */
MEMSET_BZERO (&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
}
else {
if (usedspace < SHA256_BLOCK_LENGTH) {
MEMSET_BZERO (&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
}
/* Do second-to-last transform: */
SHA256_Transform (context, (sha2_word32*) context->buffer);
/* And set-up for the last transform: */
MEMSET_BZERO (context->buffer, SHA256_SHORT_BLOCK_LENGTH);
}
}
else {
/* Set-up for the last transform: */
MEMSET_BZERO (context->buffer, SHA256_SHORT_BLOCK_LENGTH);
/* Begin padding with a 1 bit: */
*context->buffer = 0x80;
}
/* Set the bit count: */
*(sha2_word64*) &context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
/* Final transform: */
SHA256_Transform (context, (sha2_word32*) context->buffer);
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host uint8_t order */
int j;
for (j = 0; j < 8; j++) {
REVERSE32 (context->state[j], context->state[j]);
*d++ = context->state[j];
}
}
#else
MEMCPY_BCOPY (d, context->state, SHA256_DIGEST_LENGTH);
#endif
}
/* Clean up state data: */
riot_core_clear (context, sizeof (RIOT_SHA256_CONTEXT));
usedspace = 0;
}
void RIOT_SHA256_Block_ctx (RIOT_SHA256_CONTEXT *context, const uint8_t *buf, size_t bufSize,
uint8_t *digest)
{
RIOT_SHA256_Init (context);
RIOT_SHA256_Update (context, buf, bufSize);
RIOT_SHA256_Final (context, digest);
}
void RIOT_SHA256_Block (const uint8_t *buf, size_t bufSize, uint8_t *digest)
{
RIOT_SHA256_CONTEXT context;
RIOT_SHA256_Init (&context);
RIOT_SHA256_Update (&context, buf, bufSize);
RIOT_SHA256_Final (&context, digest);
}