core/riot/reference/RiotSha256.c (264 lines of code) (raw):

/* * Copyright (c) 2000-2001, Aaron D. Gifford * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holder nor the names of contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /****************************************************************************** * Copyright (c) 2014, AllSeen Alliance. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ******************************************************************************/ /* * Copyright (c) Microsoft Corporation. All rights reserved. * Licensed under the MIT License. See LICENSE in the project root. */ // // 4-MAY-2015; RIoT adaptation (DennisMa;MSFT). // #include "stdint.h" #include "string.h" // memcpy/memset #include "include/RiotSha256.h" #include "riot/riot_core.h" /*** SHA-256 Machine Architecture Definitions *****************/ /* * BYTE_ORDER NOTE: * * Please make sure that your system defines BYTE_ORDER. If your * architecture is little-endian, make sure it also defines * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are * equivilent. * * If your system does not define the above, then you can do so by * hand like this: * * #define LITTLE_ENDIAN 1234 * #define BIG_ENDIAN 4321 * * And for little-endian machines, add: * * #define BYTE_ORDER LITTLE_ENDIAN * * Or for big-endian machines: * * #define BYTE_ORDER BIG_ENDIAN * * The FreeBSD machine this was written on defines BYTE_ORDER * appropriately by including <sys/types.h> (which in turn includes * <machine/endian.h> where the appropriate definitions are actually * made). */ #if !defined (BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) #define LITTLE_ENDIAN 1234 #define BIG_ENDIAN 4321 #if HOST_IS_LITTLE_ENDIAN #define BYTE_ORDER LITTLE_ENDIAN #else #define BYTE_ORDER BIG_ENDIAN #endif #endif /* * Define the followingsha2_* types to types of the correct length on * the native architecture. Most BSD systems and Linux define u_intXX_t * types. Machines with very recent ANSI C headers, can use the * uintXX_t definitions from inttypes.h by defining SHA2_USE_INTTYPES_H * during compile or in the sha.h header file. * * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t * will need to define these three typedefs below (and the appropriate * ones in sha.h too) by hand according to their system architecture. * * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t * types and pointing out recent ANSI C support for uintXX_t in inttypes.h. */ /*** SHA-256 Length Definitions ***********************/ /* NOTE: Most of these are in sha2.h */ #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) /*** ENDIAN REVERSAL MACROS *******************************************/ #if BYTE_ORDER == LITTLE_ENDIAN #if !defined (ALIGNED_ACCESS_REQUIRED) #define REVERSE32(w,x) { \ sha2_word32 tmp = (w); \ tmp = (tmp >> 16) | (tmp << 16); \ (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ } #else #define REVERSE32(w,x) { \ sha2_uint8_t *b = (sha2_uint8_t*) &w; \ sha2_word32 tmp = 0; \ tmp = ((sha2_word32)*b++); \ tmp = (tmp << 8) | ((sha2_word32)*b++); \ tmp = (tmp << 8) | ((sha2_word32)*b++); \ tmp = (tmp << 8) | ((sha2_word32)*b++); \ (x) = tmp; \ } #endif /* ALIGNED_ACCESS_REQUIRED */ #define REVERSE64(w,x) { \ sha2_word64 tmp = (w); \ tmp = (tmp >> 32) | (tmp << 32); \ tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ ((tmp & 0x0000ffff0000ffffULL) << 16); \ } #endif /* BYTE_ORDER == LITTLE_ENDIAN */ /* * Macro for incrementally adding the unsigned 64-bit integer n to the * unsigned 128-bit integer (represented using a two-element array of * 64-bit words): */ #define ADDINC128(w,n) { \ (w)[0] += (sha2_word64)(n); \ if ((w)[0] < (n)) { \ (w)[1]++; \ } \ } /* * Macros for copying blocks of memory and for zeroing out ranges * of memory. Using these macros makes it easy to switch from * using memset()/memcpy() and using bzero()/bcopy(). * * Please define either SHA2_USE_MEMSET_MEMCPY or define * SHA2_USE_BZERO_BCOPY depending on which function set you * choose to use: */ #if !defined (SHA2_USE_MEMSET_MEMCPY) && !defined (SHA2_USE_BZERO_BCOPY) /* Default to memset()/memcpy() if no option is specified */ #define SHA2_USE_MEMSET_MEMCPY 1 #endif #if defined (SHA2_USE_MEMSET_MEMCPY) && defined (SHA2_USE_BZERO_BCOPY) /* Abort with an error if BOTH options are defined */ #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both! #endif #ifdef SHA2_USE_MEMSET_MEMCPY #define MEMSET_BZERO(p, l) memset((p), 0, (l)) #define MEMCPY_BCOPY(d, s, l) memcpy((d), (s), (l)) #endif #ifdef SHA2_USE_BZERO_BCOPY #define MEMSET_BZERO(p, l) bzero((p), (l)) #define MEMCPY_BCOPY(d, s, l) bcopy((s), (d), (l)) #endif /*** THE SIX LOGICAL FUNCTIONS ****************************************/ /* * Bit shifting and rotation (used by the six SHA-XYZ logical functions: * * NOTE: The naming of R and S appears backwards here (R is a SHIFT and * S is a ROTATION) because the SHA-256/384/512 description document * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this * same "backwards" definition. */ /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ #define R(b, x) ((x) >> (b)) /* 32-bit Rotate-right (used in SHA-256): */ #define S32(b, x) (((x) >> (b)) | ((x) << (32 - (b)))) /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z))) #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) /* Four of six logical functions used in SHA-256: */ #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) /*** INTERNAL FUNCTION PROTOTYPES *************************************/ /* NOTE: These should not be accessed directly from outside this * library -- they are intended for private internal visibility/use * only. */ static void SHA256_Transform (RIOT_SHA256_CONTEXT*, const sha2_word32*); /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ /* Hash constant words K for SHA-256: */ static const sha2_word32 K256[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; /* Initial hash value H for SHA-256: */ static const sha2_word32 sha256_initial_hash_value[8] = { 0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL, 0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL }; /* * Constant used by SHA256() functions for converting the * digest to a readable hexadecimal character string: */ //static const char *sha2_hex_digits = "0123456789abcdef"; /*** SHA-256: *********************************************************/ void RIOT_SHA256_Init (RIOT_SHA256_CONTEXT *context) { if (context == (RIOT_SHA256_CONTEXT*) 0) { return; } context->magic = HASH_MAGIC_VALUE; MEMCPY_BCOPY (context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH); MEMSET_BZERO (context->buffer, SHA256_BLOCK_LENGTH); context->bitcount = 0; } static void SHA256_Transform (RIOT_SHA256_CONTEXT *context, const sha2_word32 *data) { sha2_word32 a, b, c, d, e, f, g, h, s0, s1; sha2_word32 T1, T2, *W256; int j; W256 = (sha2_word32*) context->buffer; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { #if BYTE_ORDER == LITTLE_ENDIAN /* Copy data while converting to host uint8_t order */ REVERSE32 (*data++, W256[j]); /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256 (e) + Ch (e, f, g) + K256[j] + W256[j]; #else /* BYTE_ORDER == LITTLE_ENDIAN */ /* Apply the SHA-256 compression function to update a..h with copy */ T1 = h + Sigma1_256 (e) + Ch (e, f, g) + K256[j] + (W256[j] = *data++); #endif /* BYTE_ORDER == LITTLE_ENDIAN */ T2 = Sigma0_256 (a) + Maj (a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W256[(j + 1) & 0x0f]; s0 = sigma0_256 (s0); s1 = W256[(j + 14) & 0x0f]; s1 = sigma1_256 (s1); /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256 (e) + Ch (e, f, g) + K256[j] + (W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0); T2 = Sigma0_256 (a) + Maj (a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 64); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = T2 = 0; } void RIOT_SHA256_Update (RIOT_SHA256_CONTEXT *context, const sha2_uint8_t *data, size_t len) { unsigned int freespace, usedspace; if (len == 0) { /* Calling with no data is valid - we do nothing */ return; } /* Sanity check: */ assert (context != (RIOT_SHA256_CONTEXT*) 0 && data != (sha2_uint8_t*) 0 && context->magic == HASH_MAGIC_VALUE); usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = SHA256_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ MEMCPY_BCOPY (&context->buffer[usedspace], data, freespace); context->bitcount += freespace << 3; len -= freespace; data += freespace; SHA256_Transform (context, (sha2_word32*) context->buffer); } else { /* The buffer is not yet full */ MEMCPY_BCOPY (&context->buffer[usedspace], data, len); context->bitcount += len << 3; /* Clean up: */ usedspace = freespace = 0; return; } } while (len >= SHA256_BLOCK_LENGTH) { /* Process as many complete blocks as we can */ SHA256_Transform (context, (sha2_word32*) data); context->bitcount += SHA256_BLOCK_LENGTH << 3; len -= SHA256_BLOCK_LENGTH; data += SHA256_BLOCK_LENGTH; } if (len > 0) { /* There's left-overs, so save 'em */ MEMCPY_BCOPY (context->buffer, data, len); context->bitcount += len << 3; } /* Clean up: */ usedspace = freespace = 0; } void RIOT_SHA256_Final (RIOT_SHA256_CONTEXT *context, sha2_uint8_t *digest) { sha2_word32 *d = (sha2_word32*) digest; unsigned int usedspace; /* Sanity check: */ assert (context != (RIOT_SHA256_CONTEXT*) 0 && context->magic == HASH_MAGIC_VALUE); /* If no digest buffer is passed, we don't bother doing this: */ if (digest != (sha2_uint8_t*) 0) { usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; #if BYTE_ORDER == LITTLE_ENDIAN /* Convert FROM host uint8_t order */ REVERSE64 (context->bitcount, context->bitcount); #endif if (usedspace > 0) { /* Begin padding with a 1 bit: */ context->buffer[usedspace++] = 0x80; if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { /* Set-up for the last transform: */ MEMSET_BZERO (&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace); } else { if (usedspace < SHA256_BLOCK_LENGTH) { MEMSET_BZERO (&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace); } /* Do second-to-last transform: */ SHA256_Transform (context, (sha2_word32*) context->buffer); /* And set-up for the last transform: */ MEMSET_BZERO (context->buffer, SHA256_SHORT_BLOCK_LENGTH); } } else { /* Set-up for the last transform: */ MEMSET_BZERO (context->buffer, SHA256_SHORT_BLOCK_LENGTH); /* Begin padding with a 1 bit: */ *context->buffer = 0x80; } /* Set the bit count: */ *(sha2_word64*) &context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount; /* Final transform: */ SHA256_Transform (context, (sha2_word32*) context->buffer); #if BYTE_ORDER == LITTLE_ENDIAN { /* Convert TO host uint8_t order */ int j; for (j = 0; j < 8; j++) { REVERSE32 (context->state[j], context->state[j]); *d++ = context->state[j]; } } #else MEMCPY_BCOPY (d, context->state, SHA256_DIGEST_LENGTH); #endif } /* Clean up state data: */ riot_core_clear (context, sizeof (RIOT_SHA256_CONTEXT)); usedspace = 0; } void RIOT_SHA256_Block_ctx (RIOT_SHA256_CONTEXT *context, const uint8_t *buf, size_t bufSize, uint8_t *digest) { RIOT_SHA256_Init (context); RIOT_SHA256_Update (context, buf, bufSize); RIOT_SHA256_Final (context, digest); } void RIOT_SHA256_Block (const uint8_t *buf, size_t bufSize, uint8_t *digest) { RIOT_SHA256_CONTEXT context; RIOT_SHA256_Init (&context); RIOT_SHA256_Update (&context, buf, bufSize); RIOT_SHA256_Final (&context, digest); }