doc/code/converters/7_video_converters.ipynb (63 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adding Images to a Video\n",
"\n",
"Adds an image to a video.\n",
"To use this converter you'll need to install opencv which can be done with \n",
"`pip install pyrit[opencv]`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ConverterResult(output_text='C:\\\\Users\\\\bjagdagdorj\\\\Documents\\\\tools\\\\pyrit2\\\\PyRIT\\\\dbdata\\\\prompt-memory-entries\\\\videos\\\\1741114936092652.mp4', output_type='video_path')"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pathlib\n",
"\n",
"from pyrit.common import IN_MEMORY, initialize_pyrit\n",
"from pyrit.prompt_converter import AddImageVideoConverter\n",
"\n",
"initialize_pyrit(memory_db_type=IN_MEMORY)\n",
"\n",
"input_video = str(pathlib.Path(\".\") / \"..\" / \"..\" / \"..\" / \"assets\" / \"sample_video.mp4\")\n",
"input_image = str(pathlib.Path(\".\") / \"..\" / \"..\" / \"..\" / \"assets\" / \"pyrit_architecture.png\")\n",
"\n",
"video = AddImageVideoConverter(video_path=input_video)\n",
"converted_vid = await video.convert_async(prompt=input_image, input_type=\"image_path\") # type: ignore\n",
"converted_vid"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}