doc/code/memory/2_basic_memory_programming.ipynb (88 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"id": "0",
"metadata": {},
"source": [
"# 2. Basic Memory Programming Usage\n",
"\n",
"The `pyrit.memory` module provides functionality to keep track of the conversation history, scoring, data, and more. You can use memory to read and write data. Here is an example that retrieves a normalized conversation:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"None: user: Hi, chat bot! This is my initial prompt.\n",
"None: assistant: Nice to meet you! This is my response.\n",
"None: user: Wonderful! This is my second prompt to the chat bot!\n"
]
}
],
"source": [
"from uuid import uuid4\n",
"\n",
"from pyrit.memory.duckdb_memory import DuckDBMemory\n",
"from pyrit.models import PromptRequestPiece, PromptRequestResponse\n",
"\n",
"conversation_id = str(uuid4())\n",
"\n",
"message_list = [\n",
" PromptRequestPiece(\n",
" role=\"user\", original_value=\"Hi, chat bot! This is my initial prompt.\", conversation_id=conversation_id\n",
" ),\n",
" PromptRequestPiece(\n",
" role=\"assistant\", original_value=\"Nice to meet you! This is my response.\", conversation_id=conversation_id\n",
" ),\n",
" PromptRequestPiece(\n",
" role=\"user\",\n",
" original_value=\"Wonderful! This is my second prompt to the chat bot!\",\n",
" conversation_id=conversation_id,\n",
" ),\n",
"]\n",
"\n",
"memory = DuckDBMemory()\n",
"\n",
"memory.add_request_response_to_memory(request=PromptRequestResponse([message_list[0]]))\n",
"memory.add_request_response_to_memory(request=PromptRequestResponse([message_list[1]]))\n",
"memory.add_request_response_to_memory(request=PromptRequestResponse([message_list[2]]))\n",
"\n",
"\n",
"entries = memory.get_conversation(conversation_id=conversation_id)\n",
"\n",
"for entry in entries:\n",
" print(entry)\n",
"\n",
"\n",
"# Cleanup memory resources\n",
"memory.dispose_engine()"
]
}
],
"metadata": {
"jupytext": {
"cell_metadata_filter": "-all"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}