doc/code/memory/chat_message.ipynb (176 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"id": "0",
"metadata": {
"lines_to_next_cell": 0
},
"source": [
"# Chat messages - optional\n",
"\n",
"This notebook gives an introduction to the concept of `ChatMessage` and `ChatMessageNormalizer` and how it can be helpful as you start to work with different models.\n",
"\n",
"\n",
"The main format PyRIT works with is the `PromptRequestPiece` paradigm. Any time a user wants to store or retrieve a chat message, they will use the `PromptRequestPiece` object. However, `ChatMessage` is very common, so there are a lot of times this is the most useful. Any `PromptRequestPiece` object can be translated into a `ChatMessage` object.\n",
"\n",
"However, different models may require different formats. For example, certain models may use chatml, or may not support system messages. This is handled\n",
"in from `ChatMessageNormalizer` and its subclasses.\n",
"\n",
"Below is an example that converts a list of chat messages to chatml format and back."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<|im_start|>system\n",
"You are a helpful AI assistant<|im_end|>\n",
"<|im_start|>user\n",
"Hello, how are you?<|im_end|>\n",
"<|im_start|>assistant\n",
"I'm doing well, thanks for asking.<|im_end|>\n",
"\n"
]
}
],
"source": [
"from pyrit.chat_message_normalizer import ChatMessageNormalizerChatML\n",
"from pyrit.models import ChatMessage\n",
"\n",
"messages = [\n",
" ChatMessage(role=\"system\", content=\"You are a helpful AI assistant\"),\n",
" ChatMessage(role=\"user\", content=\"Hello, how are you?\"),\n",
" ChatMessage(role=\"assistant\", content=\"I'm doing well, thanks for asking.\"),\n",
"]\n",
"\n",
"normalizer = ChatMessageNormalizerChatML()\n",
"chatml_messages = normalizer.normalize(messages)\n",
"# chatml_messages is a string in chatml format\n",
"\n",
"print(chatml_messages)"
]
},
{
"cell_type": "markdown",
"id": "2",
"metadata": {},
"source": [
"\n",
"If you wish you load a chatml-format conversation, you can use the `from_chatml` method in the `ChatMessageNormalizerChatML`. This will return a list of `ChatMessage` objects that you can then use."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ChatMessage(role='system', content='You are a helpful AI assistant', name=None, tool_calls=None, tool_call_id=None), ChatMessage(role='user', content='Hello, how are you?', name=None, tool_calls=None, tool_call_id=None), ChatMessage(role='assistant', content=\"I'm doing well, thanks for asking.\", name=None, tool_calls=None, tool_call_id=None)]\n"
]
}
],
"source": [
"chat_messages = normalizer.from_chatml(\n",
" \"\"\"\\\n",
" <|im_start|>system\n",
" You are a helpful AI assistant<|im_end|>\n",
" <|im_start|>user\n",
" Hello, how are you?<|im_end|>\n",
" <|im_start|>assistant\n",
" I'm doing well, thanks for asking.<|im_end|>\"\"\"\n",
")\n",
"\n",
"print(chat_messages)"
]
},
{
"cell_type": "markdown",
"id": "4",
"metadata": {},
"source": [
"To see how to use this in action, check out the [aml endpoint](../targets/3_non_open_ai_chat_targets.ipynb) notebook. It takes a `chat_message_normalizer` parameter so that an AML model can support various chat message formats."
]
},
{
"cell_type": "markdown",
"id": "5",
"metadata": {
"lines_to_next_cell": 0
},
"source": [
"Besides chatml, there are many other chat templates that a model might be trained on. If you would like to apply the template stored in a Hugging Face tokenizer,\n",
"you can utilize `ChatMessageNormalizerTokenizerTemplate`. In the example below, we load the tokenizer for Mistral-7B-Instruct-v0.1 and apply its chat template to\n",
"the messages. Note that this template only adds `[INST]` and `[/INST]` tokens to the user messages for instruction fine-tuning."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<s> [INST] Hello, how are you? [/INST] I'm doing well, thanks for asking.</s> [INST] What is your favorite food? [/INST]\n"
]
}
],
"source": [
"import os\n",
"\n",
"from transformers import AutoTokenizer\n",
"\n",
"from pyrit.chat_message_normalizer import ChatMessageNormalizerTokenizerTemplate\n",
"\n",
"messages = [\n",
" ChatMessage(role=\"user\", content=\"Hello, how are you?\"),\n",
" ChatMessage(role=\"assistant\", content=\"I'm doing well, thanks for asking.\"),\n",
" ChatMessage(role=\"user\", content=\"What is your favorite food?\"),\n",
"]\n",
"\n",
"# Load the tokenizer. If you are not logged in via CLI (huggingface-cli login), you can pass in your access token here\n",
"# via the HUGGINGFACE_TOKEN environment variable to access the gated model.\n",
"tokenizer = AutoTokenizer.from_pretrained(\"mistralai/Mistral-7B-Instruct-v0.1\",\n",
" token = os.environ.get(\"HUGGINGFACE_TOKEN\"))\n",
"\n",
"# create the normalizer and pass in the tokenizer\n",
"tokenizer_normalizer = ChatMessageNormalizerTokenizerTemplate(tokenizer)\n",
"\n",
"tokenizer_template_messages = tokenizer_normalizer.normalize(messages)\n",
"print(tokenizer_template_messages)"
]
}
],
"metadata": {
"jupytext": {
"cell_metadata_filter": "-all"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}