in src/responsibleai/rai_analyse/create_score_card.py [0:0]
def validate_and_correct_config(config, insight_data):
i_data = insight_data.get_raiinsight()
try:
top_n = config["FeatureImportance"]["top_n"]
if top_n > 10:
_logger.warning(
"Feature importance is limited to "
"top 10 most important feature"
f", but top_n={top_n} was specificed."
"Setting top_n to 10 automatically."
)
config["FeatureImportance"]["top_n"] = 10
except KeyError:
pass
if "Fairness" in config.keys():
fc = config["Fairness"]
cat_features = [
f for f in fc["sensitive_features"] if f in i_data.categorical_features
]
dropped_features = [
f for f in fc["sensitive_features"] if f not in i_data.categorical_features
]
_logger.warning(
"Non categorical features dropped for fairness assessment: {}".format(dropped_features)
)
fc["sensitive_features"] = cat_features
return config