in src/responsibleai/rai_analyse/_score_card/_rai_insight_data.py [0:0]
def get_data_explorer_data(self):
de_data = []
y_test = self.data.get_y_test()
y_predict = self.data.get_y_pred()
for feature in self.config["DataExplorer"]["features"]:
if feature not in self._get_feature_names():
raise UserConfigValidationException(
f"Feature {feature} not found in the dataset. "
"Please check the feature names specified for 'DataExplorer'."
)
label_list, new_labels = self.get_binning_information(feature)
counts = new_labels.value_counts()
total = len(new_labels)
primary_metric = self.primary_metric
data = {
"feature_name": feature,
"primary_metric": primary_metric,
"data": [],
}
da_labels_generator = AlphabetLabelIterator()
for label in label_list:
index_filter = [True if x == label else False for x in new_labels]
f_data = {
"label": label,
"short_label": next(da_labels_generator),
"population": counts[label] / total,
"prediction": y_predict[index_filter],
}
if primary_metric:
f_data[primary_metric] = get_metric(
primary_metric,
y_predict[index_filter],
y_test[index_filter],
**self.get_metric_kwargs(),
)
data["data"].append(f_data)
de_data.append(data)
return de_data