in src/responsibleai/rai_analyse/_score_card/regression_components.py [0:0]
def get_data_explorer_page(data):
de_heading_left_elms = p(
"Evaluate your dataset to assess representation of identified cohorts:"
)
de_heading_left_elms.append(get_bar_plot_explanation_image())
de_heading_left_container = div(de_heading_left_elms, _class="left")
# heading_container = div(de_heading_left_container, _class="container")
containers = []
for c in data:
left_elems = []
main_elems = []
main_elems.append(h3(c["feature_name"]))
left_elems = [h3(c["feature_name"])]
feature_list = ul()
for i in c["data"]:
feature_list.append(li("{}: {}".format(i["short_label"], i["label"])))
main_elems.append(
p(
"For cohort: {} {}, {} is the {} between the actual and predicted values.".format(
c["feature_name"],
i["label"],
round(i[c["primary_metric"]], 1),
c["primary_metric"],
)
)
)
main_elems.append(
div(
p(
"Histogram of your model errors (difference between the actual and predicted values)"
),
cc.get_de_box_plot_image(c),
_class="nobreak_div",
)
)
left_elems.append(feature_list)
containers.append(
str(
div(
div(left_elems, _class="left"),
div(main_elems, _class="main"),
_class="container",
)
)
)
return str(
div(
cc.get_page_divider("Data Explorer"),
de_heading_left_container,
_class="container",
)
) + "".join(containers)