in pipeline/function_app.py [0:0]
def run(context):
input_data = context.get_input()
logging.info(f"Context {context}")
logging.info(f"Input data: {input_data}")
sub_tasks = []
for blob in input_data:
logging.info(f"Calling sub orchestrator for blob: {blob}")
sub_tasks.append(context.call_sub_orchestrator("ProcessBlob", blob))
logging.info(f"Sub tasks: {sub_tasks}")
# Runs a list of asynchronous tasks in parallel and waits for all of them to complete. In this case, the tasks are sub-orchestrations that process each blob in parallel
results = yield context.task_all(sub_tasks)
logging.info(f"Results: {results}")
return results