def norm()

in HowTo/gRPC/Linux/OpenAI/LangChain/PyServer/venv/Lib/numpy/linalg/linalg.py [0:0]


def norm(x, ord=None, axis=None, keepdims=False):
    """
    Matrix or vector norm.

    This function is able to return one of eight different matrix norms,
    or one of an infinite number of vector norms (described below), depending
    on the value of the ``ord`` parameter.

    Parameters
    ----------
    x : array_like
        Input array.  If `axis` is None, `x` must be 1-D or 2-D, unless `ord`
        is None. If both `axis` and `ord` are None, the 2-norm of
        ``x.ravel`` will be returned.
    ord : {non-zero int, inf, -inf, 'fro', 'nuc'}, optional
        Order of the norm (see table under ``Notes``). inf means numpy's
        `inf` object. The default is None.
    axis : {None, int, 2-tuple of ints}, optional.
        If `axis` is an integer, it specifies the axis of `x` along which to
        compute the vector norms.  If `axis` is a 2-tuple, it specifies the
        axes that hold 2-D matrices, and the matrix norms of these matrices
        are computed.  If `axis` is None then either a vector norm (when `x`
        is 1-D) or a matrix norm (when `x` is 2-D) is returned. The default
        is None.

        .. versionadded:: 1.8.0

    keepdims : bool, optional
        If this is set to True, the axes which are normed over are left in the
        result as dimensions with size one.  With this option the result will
        broadcast correctly against the original `x`.

        .. versionadded:: 1.10.0

    Returns
    -------
    n : float or ndarray
        Norm of the matrix or vector(s).

    See Also
    --------
    scipy.linalg.norm : Similar function in SciPy.

    Notes
    -----
    For values of ``ord < 1``, the result is, strictly speaking, not a
    mathematical 'norm', but it may still be useful for various numerical
    purposes.

    The following norms can be calculated:

    =====  ============================  ==========================
    ord    norm for matrices             norm for vectors
    =====  ============================  ==========================
    None   Frobenius norm                2-norm
    'fro'  Frobenius norm                --
    'nuc'  nuclear norm                  --
    inf    max(sum(abs(x), axis=1))      max(abs(x))
    -inf   min(sum(abs(x), axis=1))      min(abs(x))
    0      --                            sum(x != 0)
    1      max(sum(abs(x), axis=0))      as below
    -1     min(sum(abs(x), axis=0))      as below
    2      2-norm (largest sing. value)  as below
    -2     smallest singular value       as below
    other  --                            sum(abs(x)**ord)**(1./ord)
    =====  ============================  ==========================

    The Frobenius norm is given by [1]_:

        :math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}`

    The nuclear norm is the sum of the singular values.

    Both the Frobenius and nuclear norm orders are only defined for
    matrices and raise a ValueError when ``x.ndim != 2``.

    References
    ----------
    .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*,
           Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15

    Examples
    --------
    >>> from numpy import linalg as LA
    >>> a = np.arange(9) - 4
    >>> a
    array([-4, -3, -2, ...,  2,  3,  4])
    >>> b = a.reshape((3, 3))
    >>> b
    array([[-4, -3, -2],
           [-1,  0,  1],
           [ 2,  3,  4]])

    >>> LA.norm(a)
    7.745966692414834
    >>> LA.norm(b)
    7.745966692414834
    >>> LA.norm(b, 'fro')
    7.745966692414834
    >>> LA.norm(a, np.inf)
    4.0
    >>> LA.norm(b, np.inf)
    9.0
    >>> LA.norm(a, -np.inf)
    0.0
    >>> LA.norm(b, -np.inf)
    2.0

    >>> LA.norm(a, 1)
    20.0
    >>> LA.norm(b, 1)
    7.0
    >>> LA.norm(a, -1)
    -4.6566128774142013e-010
    >>> LA.norm(b, -1)
    6.0
    >>> LA.norm(a, 2)
    7.745966692414834
    >>> LA.norm(b, 2)
    7.3484692283495345

    >>> LA.norm(a, -2)
    0.0
    >>> LA.norm(b, -2)
    1.8570331885190563e-016 # may vary
    >>> LA.norm(a, 3)
    5.8480354764257312 # may vary
    >>> LA.norm(a, -3)
    0.0

    Using the `axis` argument to compute vector norms:

    >>> c = np.array([[ 1, 2, 3],
    ...               [-1, 1, 4]])
    >>> LA.norm(c, axis=0)
    array([ 1.41421356,  2.23606798,  5.        ])
    >>> LA.norm(c, axis=1)
    array([ 3.74165739,  4.24264069])
    >>> LA.norm(c, ord=1, axis=1)
    array([ 6.,  6.])

    Using the `axis` argument to compute matrix norms:

    >>> m = np.arange(8).reshape(2,2,2)
    >>> LA.norm(m, axis=(1,2))
    array([  3.74165739,  11.22497216])
    >>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :])
    (3.7416573867739413, 11.224972160321824)

    """
    x = asarray(x)

    if not issubclass(x.dtype.type, (inexact, object_)):
        x = x.astype(float)

    # Immediately handle some default, simple, fast, and common cases.
    if axis is None:
        ndim = x.ndim
        if ((ord is None) or
            (ord in ('f', 'fro') and ndim == 2) or
            (ord == 2 and ndim == 1)):

            x = x.ravel(order='K')
            if isComplexType(x.dtype.type):
                x_real = x.real
                x_imag = x.imag
                sqnorm = x_real.dot(x_real) + x_imag.dot(x_imag)
            else:
                sqnorm = x.dot(x)
            ret = sqrt(sqnorm)
            if keepdims:
                ret = ret.reshape(ndim*[1])
            return ret

    # Normalize the `axis` argument to a tuple.
    nd = x.ndim
    if axis is None:
        axis = tuple(range(nd))
    elif not isinstance(axis, tuple):
        try:
            axis = int(axis)
        except Exception as e:
            raise TypeError("'axis' must be None, an integer or a tuple of integers") from e
        axis = (axis,)

    if len(axis) == 1:
        if ord == Inf:
            return abs(x).max(axis=axis, keepdims=keepdims)
        elif ord == -Inf:
            return abs(x).min(axis=axis, keepdims=keepdims)
        elif ord == 0:
            # Zero norm
            return (x != 0).astype(x.real.dtype).sum(axis=axis, keepdims=keepdims)
        elif ord == 1:
            # special case for speedup
            return add.reduce(abs(x), axis=axis, keepdims=keepdims)
        elif ord is None or ord == 2:
            # special case for speedup
            s = (x.conj() * x).real
            return sqrt(add.reduce(s, axis=axis, keepdims=keepdims))
        # None of the str-type keywords for ord ('fro', 'nuc')
        # are valid for vectors
        elif isinstance(ord, str):
            raise ValueError(f"Invalid norm order '{ord}' for vectors")
        else:
            absx = abs(x)
            absx **= ord
            ret = add.reduce(absx, axis=axis, keepdims=keepdims)
            ret **= reciprocal(ord, dtype=ret.dtype)
            return ret
    elif len(axis) == 2:
        row_axis, col_axis = axis
        row_axis = normalize_axis_index(row_axis, nd)
        col_axis = normalize_axis_index(col_axis, nd)
        if row_axis == col_axis:
            raise ValueError('Duplicate axes given.')
        if ord == 2:
            ret =  _multi_svd_norm(x, row_axis, col_axis, amax)
        elif ord == -2:
            ret = _multi_svd_norm(x, row_axis, col_axis, amin)
        elif ord == 1:
            if col_axis > row_axis:
                col_axis -= 1
            ret = add.reduce(abs(x), axis=row_axis).max(axis=col_axis)
        elif ord == Inf:
            if row_axis > col_axis:
                row_axis -= 1
            ret = add.reduce(abs(x), axis=col_axis).max(axis=row_axis)
        elif ord == -1:
            if col_axis > row_axis:
                col_axis -= 1
            ret = add.reduce(abs(x), axis=row_axis).min(axis=col_axis)
        elif ord == -Inf:
            if row_axis > col_axis:
                row_axis -= 1
            ret = add.reduce(abs(x), axis=col_axis).min(axis=row_axis)
        elif ord in [None, 'fro', 'f']:
            ret = sqrt(add.reduce((x.conj() * x).real, axis=axis))
        elif ord == 'nuc':
            ret = _multi_svd_norm(x, row_axis, col_axis, sum)
        else:
            raise ValueError("Invalid norm order for matrices.")
        if keepdims:
            ret_shape = list(x.shape)
            ret_shape[axis[0]] = 1
            ret_shape[axis[1]] = 1
            ret = ret.reshape(ret_shape)
        return ret
    else:
        raise ValueError("Improper number of dimensions to norm.")