A temporal dependency occurs when developers change two or more files at the same time (i.e. they are a part of the same commit).
No file pairs changed together.
No temporal dependencies found.
No temporal dependencies found.
Pairs | # same commits | # commits 1 | # commits 2 | latest commit |
---|---|---|---|---|
phi3/src_serve/score.py phi3/1_training_custom_phi3.ipynb |
2 | 4 (50%) | 2 (100%) | 2025-03-17 |
phi3/1_training_mlflow_phi3.ipynb phi3/1_training_custom_phi3.ipynb |
2 | 2 (100%) | 2 (100%) | 2025-03-17 |
phi3/src_serve/score.py florence2-VQA/1_training_mlflow_florence2.ipynb |
2 | 4 (50%) | 2 (100%) | 2025-03-17 |
phi3/1_training_custom_phi3.ipynb florence2-VQA/1_training_mlflow_florence2.ipynb |
2 | 2 (100%) | 2 (100%) | 2025-03-17 |
phi3/src_serve/score.py phi3/1_training_mlflow_phi3.ipynb |
2 | 4 (50%) | 2 (100%) | 2025-03-17 |
phi3/1_training_mlflow_phi3.ipynb florence2-VQA/2_serving_florence2.ipynb |
2 | 2 (100%) | 2 (100%) | 2025-03-17 |
phi3/1_training_mlflow_phi3.ipynb florence2-VQA/1_training_mlflow_florence2.ipynb |
2 | 2 (100%) | 2 (100%) | 2025-03-17 |
florence2-VQA/2_serving_florence2.ipynb florence2-VQA/1_training_mlflow_florence2.ipynb |
2 | 2 (100%) | 2 (100%) | 2025-03-17 |
phi3/1_training_custom_phi3.ipynb florence2-VQA/2_serving_florence2.ipynb |
2 | 2 (100%) | 2 (100%) | 2025-03-17 |
phi3/src_serve/score.py florence2-VQA/2_serving_florence2.ipynb |
2 | 4 (50%) | 2 (100%) | 2025-03-17 |
phi3/src_train/train_mlflow.py phi3/src_serve/score.py |
1 | 3 (33%) | 4 (25%) | 2025-03-17 |
phi3/dataset-preparation/train_tokenizer.py phi3/3_optimization_olive.ipynb |
1 | 3 (33%) | 3 (33%) | 2025-03-17 |
phi3/3_optimization_olive.ipynb phi3/src_serve/score.py |
1 | 3 (33%) | 4 (25%) | 2025-03-17 |
phi3/3_optimization_olive.ipynb florence2-VQA/2_serving_florence2.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/src_train/train_mlflow.py florence2-VQA/2_serving_florence2.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/dataset-preparation/train_tokenizer.py florence2-VQA/2_serving_florence2.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/3_optimization_olive.ipynb phi3/1_training_mlflow_phi3.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/dataset-preparation/train_tokenizer.py phi3/1_training_mlflow_phi3.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/src_train/train.py florence2-VQA/2_serving_florence2.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/src_train/train.py phi3/1_training_mlflow_phi3.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/src_train/train.py phi3/1_training_custom_phi3.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/src_train/train_mlflow.py florence2-VQA/1_training_mlflow_florence2.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/dataset-preparation/train_tokenizer.py florence2-VQA/1_training_mlflow_florence2.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/src_train/train_mlflow.py phi3/1_training_custom_phi3.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/3_optimization_olive.ipynb phi3/1_training_custom_phi3.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/src_train/train_mlflow.py phi3/src_train/train.py |
1 | 3 (33%) | 3 (33%) | 2025-03-17 |
phi3/3_optimization_olive.ipynb florence2-VQA/1_training_mlflow_florence2.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/src_train/train.py phi3/src_serve/score.py |
1 | 3 (33%) | 4 (25%) | 2025-03-17 |
phi3/src_train/train_mlflow.py phi3/1_training_mlflow_phi3.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/dataset-preparation/train_tokenizer.py phi3/1_training_custom_phi3.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/dataset-preparation/train_tokenizer.py phi3/src_serve/score.py |
1 | 3 (33%) | 4 (25%) | 2025-03-17 |
phi3/src_train/train.py florence2-VQA/1_training_mlflow_florence2.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
Pairs | # same commits | # commits 1 | # commits 2 | latest commit |
---|---|---|---|---|
phi3/1_training_mlflow_phi3.ipynb phi3/1_training_custom_phi3.ipynb |
2 | 2 (100%) | 2 (100%) | 2025-03-17 |
florence2-VQA/2_serving_florence2.ipynb florence2-VQA/1_training_mlflow_florence2.ipynb |
2 | 2 (100%) | 2 (100%) | 2025-03-17 |
phi3/1_training_mlflow_phi3.ipynb florence2-VQA/2_serving_florence2.ipynb |
2 | 2 (100%) | 2 (100%) | 2025-03-17 |
phi3/src_serve/score.py florence2-VQA/1_training_mlflow_florence2.ipynb |
2 | 4 (50%) | 2 (100%) | 2025-03-17 |
phi3/src_serve/score.py phi3/1_training_custom_phi3.ipynb |
2 | 4 (50%) | 2 (100%) | 2025-03-17 |
phi3/src_serve/score.py florence2-VQA/2_serving_florence2.ipynb |
2 | 4 (50%) | 2 (100%) | 2025-03-17 |
phi3/1_training_mlflow_phi3.ipynb florence2-VQA/1_training_mlflow_florence2.ipynb |
2 | 2 (100%) | 2 (100%) | 2025-03-17 |
phi3/src_serve/score.py phi3/1_training_mlflow_phi3.ipynb |
2 | 4 (50%) | 2 (100%) | 2025-03-17 |
phi3/1_training_custom_phi3.ipynb florence2-VQA/1_training_mlflow_florence2.ipynb |
2 | 2 (100%) | 2 (100%) | 2025-03-17 |
phi3/1_training_custom_phi3.ipynb florence2-VQA/2_serving_florence2.ipynb |
2 | 2 (100%) | 2 (100%) | 2025-03-17 |
phi3/src_train/train.py florence2-VQA/2_serving_florence2.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/3_optimization_olive.ipynb florence2-VQA/2_serving_florence2.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/src_train/train_mlflow.py florence2-VQA/2_serving_florence2.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/3_optimization_olive.ipynb phi3/1_training_custom_phi3.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/dataset-preparation/train_tokenizer.py phi3/src_serve/score.py |
1 | 3 (33%) | 4 (25%) | 2025-03-17 |
phi3/dataset-preparation/train_tokenizer.py phi3/1_training_mlflow_phi3.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/src_train/train_mlflow.py phi3/1_training_mlflow_phi3.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/3_optimization_olive.ipynb phi3/src_serve/score.py |
1 | 3 (33%) | 4 (25%) | 2025-03-17 |
phi3/src_train/train_mlflow.py phi3/src_serve/score.py |
1 | 3 (33%) | 4 (25%) | 2025-03-17 |
phi3/src_train/train_mlflow.py florence2-VQA/1_training_mlflow_florence2.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/src_train/train.py florence2-VQA/1_training_mlflow_florence2.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/src_train/train.py phi3/1_training_mlflow_phi3.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/3_optimization_olive.ipynb phi3/1_training_mlflow_phi3.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/src_train/train_mlflow.py phi3/src_train/train.py |
1 | 3 (33%) | 3 (33%) | 2025-03-17 |
phi3/src_train/train_mlflow.py phi3/1_training_custom_phi3.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/dataset-preparation/train_tokenizer.py phi3/3_optimization_olive.ipynb |
1 | 3 (33%) | 3 (33%) | 2025-03-17 |
phi3/dataset-preparation/train_tokenizer.py florence2-VQA/1_training_mlflow_florence2.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/src_train/train.py phi3/src_serve/score.py |
1 | 3 (33%) | 4 (25%) | 2025-03-17 |
phi3/src_train/train.py phi3/1_training_custom_phi3.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/3_optimization_olive.ipynb florence2-VQA/1_training_mlflow_florence2.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/dataset-preparation/train_tokenizer.py phi3/1_training_custom_phi3.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |
phi3/dataset-preparation/train_tokenizer.py florence2-VQA/2_serving_florence2.ipynb |
1 | 3 (33%) | 2 (50%) | 2025-03-17 |