in florence2-VQA/src_train/train_mlflow.py [0:0]
def parse_args():
# setup argparse
parser = argparse.ArgumentParser()
# curr_time = datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
# hyperparameters
parser.add_argument("--model_name_or_path", default="microsoft/Florence-2-base-ft", type=str, help="Model name or path")
parser.add_argument("--train_dir", default="../dataset", type=str, help="Input directory for training")
parser.add_argument("--model_dir", default="./model", type=str, help="output directory for model")
parser.add_argument("--epochs", default=1, type=int, help="number of epochs")
parser.add_argument("--output_dir", default="./output_dir", type=str, help="directory to temporarily store when training a model")
parser.add_argument("--train_batch_size", default=10, type=int, help="training - mini batch size for each gpu/process")
parser.add_argument("--eval_batch_size", default=10, type=int, help="evaluation - mini batch size for each gpu/process")
parser.add_argument("--learning_rate", default=1e-06, type=float, help="learning rate")
parser.add_argument("--logging_steps", default=5, type=int, help="logging steps")
parser.add_argument("--save_steps", default=20, type=int, help="save steps")
parser.add_argument("--grad_accum_steps", default=1, type=int, help="gradient accumulation steps")
parser.add_argument("--lr_scheduler_type", default="linear", type=str)
parser.add_argument("--seed", default=0, type=int, help="seed")
parser.add_argument("--warmup_ratio", default=0.2, type=float, help="warmup ratio")
# parse args
args = parser.parse_args()
# return args
return args