florence2-VQA/src_serve/score.py (57 lines of code) (raw):
import os
import re
import json
import torch
import base64
import logging
from io import BytesIO
from PIL import Image
from transformers import AutoTokenizer, AutoProcessor, BitsAndBytesConfig, get_scheduler
from transformers import AutoModelForCausalLM, AutoProcessor
from PIL import Image, ImageDraw, ImageFont
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def run_example_base64(task_prompt, text_input, base64_image, params):
max_new_tokens = params["max_new_tokens"]
num_beams = params["num_beams"]
image = Image.open(BytesIO(base64.b64decode(base64_image)))
prompt = task_prompt + text_input
# Ensure the image is in RGB mode
if image.mode != "RGB":
image = image.convert("RGB")
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=max_new_tokens,
num_beams=num_beams
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
return parsed_answer
def init():
"""
This function is called when the container is initialized/started, typically after create/update of the deployment.
You can write the logic here to perform init operations like caching the model in memory
"""
global model
global processor
# AZUREML_MODEL_DIR is an environment variable created during deployment.
# It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)
# Please provide your model's folder name if there is one
model_name_or_path = os.path.join(
os.getenv("AZUREML_MODEL_DIR"), "outputs"
)
model_kwargs = dict(
trust_remote_code=True,
revision="refs/pr/6",
device_map=device
)
processor_kwargs = dict(
trust_remote_code=True,
revision="refs/pr/6"
)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, **model_kwargs)
processor = AutoProcessor.from_pretrained(model_name_or_path, **processor_kwargs)
logging.info("Loaded model.")
def run(json_data: str):
logging.info("Request received")
data = json.loads(json_data)
task_prompt = data["task_prompt"]
text_input = data["text_input"]
base64_image = data["image_input"]
params = data['params']
generated_text = run_example_base64(task_prompt, text_input, base64_image, params)
json_result = {"result": str(generated_text)}
return json_result