phi3/src_serve/score.py (28 lines of code) (raw):
import os
import logging
import json
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
from peft import LoraConfig, get_peft_model
def init():
"""
This function is called when the container is initialized/started, typically after create/update of the deployment.
You can write the logic here to perform init operations like caching the model in memory
"""
global model
global tokenizer
# AZUREML_MODEL_DIR is an environment variable created during deployment.
# It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)
# Please provide your model's folder name if there is one
model_path = os.path.join(
os.getenv("AZUREML_MODEL_DIR"), "./outputs"
)
model_id = "microsoft/Phi-4-mini-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map={"":0}, torch_dtype="auto", trust_remote_code=True)
model.load_adapter(model_path)
logging.info("Loaded model.")
def run(json_data: str):
logging.info("Request received")
data = json.loads(json_data)
input_data= data["input_data"]
params = data['params']
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
output = pipe(input_data, **params)
generated_text = output[0]['generated_text']
logging.info("Output Response: " + generated_text)
json_result = {"result": str(generated_text)}
return json_result