demo-python/code/custom-vectorizer/azure-search-custom-vectorization-sample.ipynb (213 lines of code) (raw):

{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Azure AI Search vectorization using sentence-transformers\n", "\n", "This code demonstrates how to use Azure AI Search with a Hugging Face embedding model, [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2), and the Azure AI Search Documents Python SDK.\n", "\n", "It uses `azd` and a bicep template for all deployment steps so that you can focus on queries.\n", "\n", "## Prerequisites\n", "\n", "+ Follow the instructions in the [readme](./readme.md) to deploy all Azure resources, and to create and load the search index.\n", "\n", "+ Check your search service to make sure the index exists. If you don't see an index, revisit the readme and run the `setup_search_service` script.\n", "\n", "+ Don't add an `.env` file to this folder. Environment variables are read from the `azd` deployment.\n", "\n", "+ Install the packages necessary for running the queries in this notebook. " ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "! pip install azure-search-documents==11.6.0b3 --quiet\n", "! pip install python-dotenv azure-identity --quiet" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Load all environment variables from the azd deployment\n", "import subprocess\n", "from io import StringIO\n", "from dotenv import load_dotenv\n", "result = subprocess.run([\"azd\", \"env\", \"get-values\"], stdout=subprocess.PIPE)\n", "load_dotenv(stream=StringIO(result.stdout.decode(\"utf-8\")))" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "import os\n", "search_url = f\"https://{os.environ['AZURE_SEARCH_SERVICE']}.search.windows.net\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Perform a vector similarity search\n", "\n", "This example shows a pure vector search using the vectorizable text query, all you need to do is pass in text and your vectorizer will handle the query vectorization." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from azure.search.documents import SearchClient\n", "from azure.search.documents.models import VectorizableTextQuery\n", "from azure.identity import DefaultAzureCredential\n", "# Pure Vector Search\n", "query = \"What's a performance review?\" \n", " \n", "search_client = SearchClient(search_url, \"custom-embedding-index\", credential=DefaultAzureCredential())\n", "vector_query = VectorizableTextQuery(text=query, k_nearest_neighbors=50, fields=\"vector\", exhaustive=True)\n", "# Use the below query to pass in the raw vector query instead of the query vectorization\n", "# vector_query = RawVectorQuery(vector=generate_embeddings(query), k_nearest_neighbors=3, fields=\"vector\")\n", " \n", "results = search_client.search( \n", " search_text=None, \n", " vector_queries= [vector_query],\n", " select=[\"parent_id\", \"chunk_id\", \"chunk\"],\n", " top=1\n", ") \n", " \n", "for result in results: \n", " print(f\"parent_id: {result['parent_id']}\") \n", " print(f\"Score: {result['@search.score']}\") \n", " print(f\"Content: {result['chunk']}\") \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Perform a hybrid search" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Hybrid Search\n", "query = \"What's a performance review?\" \n", " \n", "vector_query = VectorizableTextQuery(text=query, k_nearest_neighbors=50, fields=\"vector\", exhaustive=True)\n", " \n", "results = search_client.search( \n", " search_text=query, \n", " vector_queries= [vector_query],\n", " select=[\"parent_id\", \"chunk_id\", \"chunk\"],\n", " top=1\n", ") \n", " \n", "for result in results: \n", " print(f\"parent_id: {result['parent_id']}\") \n", " print(f\"chunk_id: {result['chunk_id']}\") \n", " print(f\"Score: {result['@search.score']}\") \n", " print(f\"Content: {result['chunk']}\") \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Perform a hybrid search + Semantic reranking" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from azure.search.documents.models import QueryType, QueryCaptionType, QueryAnswerType\n", "\n", "# Semantic Hybrid Search\n", "query = \"What's a performance review?\"\n", "\n", "vector_query = VectorizableTextQuery(text=query, k_nearest_neighbors=50, fields=\"vector\", exhaustive=True)\n", "\n", "results = search_client.search( \n", " search_text=query,\n", " vector_queries=[vector_query],\n", " select=[\"parent_id\", \"chunk_id\", \"chunk\"],\n", " query_type=QueryType.SEMANTIC, semantic_configuration_name='my-semantic-config', query_caption=QueryCaptionType.EXTRACTIVE, query_answer=QueryAnswerType.EXTRACTIVE,\n", " top=2\n", ")\n", "\n", "semantic_answers = results.get_answers()\n", "for answer in semantic_answers:\n", " if answer.highlights:\n", " print(f\"Semantic Answer: {answer.highlights}\")\n", " else:\n", " print(f\"Semantic Answer: {answer.text}\")\n", " print(f\"Semantic Answer Score: {answer.score}\\n\")\n", "\n", "for result in results:\n", " print(f\"parent_id: {result['parent_id']}\") \n", " print(f\"chunk_id: {result['chunk_id']}\") \n", " print(f\"Score: {result['@search.score']}\") \n", " print(f\"Content: {result['chunk']}\") \n", "\n", " captions = result[\"@search.captions\"]\n", " if captions:\n", " caption = captions[0]\n", " if caption.highlights:\n", " print(f\"Caption: {caption.highlights}\\n\")\n", " else:\n", " print(f\"Caption: {caption.text}\\n\")\n" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 2 }