assets/large_language_models/rag/components/create_faiss_index/spec.yaml (26 lines of code) (raw):

$schema: https://azuremlschemas.azureedge.net/latest/commandComponent.schema.json type: command tags: Preview: "" version: 0.0.78 name: llm_rag_create_faiss_index display_name: LLM - Create FAISS Index is_deterministic: true description: | Creates a FAISS index from embeddings. The index will be saved to the output folder. The index will be registered as a Data Asset named `asset_name` if `register_output` is set to `True`. inputs: embeddings: type: uri_folder mode: direct description: Folder containing embeddings to be indexed. outputs: index: type: uri_folder description: "Uri Folder containing MLIndex yaml file and faiss/pickle files that hold data for the index" environment: azureml:llm-rag-embeddings@latest code: '../src/' command: >- python -m azureml.rag.tasks.build_faiss --embeddings '${{inputs.embeddings}}' --output '${{outputs.index}}'