assets/large_language_models/rag/components/create_faiss_index/spec.yaml (26 lines of code) (raw):
$schema: https://azuremlschemas.azureedge.net/latest/commandComponent.schema.json
type: command
tags:
Preview: ""
version: 0.0.78
name: llm_rag_create_faiss_index
display_name: LLM - Create FAISS Index
is_deterministic: true
description: |
Creates a FAISS index from embeddings. The index will be saved to the output folder.
The index will be registered as a Data Asset named `asset_name` if `register_output` is set to `True`.
inputs:
embeddings:
type: uri_folder
mode: direct
description: Folder containing embeddings to be indexed.
outputs:
index:
type: uri_folder
description: "Uri Folder containing MLIndex yaml file and faiss/pickle files that hold data for the index"
environment: azureml:llm-rag-embeddings@latest
code: '../src/'
command: >-
python -m azureml.rag.tasks.build_faiss
--embeddings '${{inputs.embeddings}}'
--output '${{outputs.index}}'