assets/large_language_models/rag/components/register_mlindex_asset/spec.yaml (30 lines of code) (raw):
$schema: https://azuremlschemas.azureedge.net/latest/commandComponent.schema.json
type: command
tags:
Preview: ""
version: 0.0.77
name: llm_rag_register_mlindex_asset
display_name: LLM - Register Vector Index Asset
is_deterministic: true
description: |
Registers a MLIndex yaml and supporting files as an AzureML data asset
inputs:
storage_uri:
type: uri_folder
mode: direct
description: Folder containing MLIndex to be registered.
asset_name:
type: string
optional: true
description: "Name of the MLIndex registered dataset"
outputs:
asset_id:
type: uri_file
description: "Asset ID of the newly created data asset"
environment: azureml:llm-rag-embeddings@latest
code: '../src'
command: >-
python -m azureml.rag.tasks.register_mlindex
--storage-uri '${{inputs.storage_uri}}'
$[[--asset-name '${{inputs.asset_name}}']]
--output-asset-id ${{outputs.asset_id}}