assets/large_language_models/rag/components/register_mlindex_asset/spec.yaml (30 lines of code) (raw):

$schema: https://azuremlschemas.azureedge.net/latest/commandComponent.schema.json type: command tags: Preview: "" version: 0.0.77 name: llm_rag_register_mlindex_asset display_name: LLM - Register Vector Index Asset is_deterministic: true description: | Registers a MLIndex yaml and supporting files as an AzureML data asset inputs: storage_uri: type: uri_folder mode: direct description: Folder containing MLIndex to be registered. asset_name: type: string optional: true description: "Name of the MLIndex registered dataset" outputs: asset_id: type: uri_file description: "Asset ID of the newly created data asset" environment: azureml:llm-rag-embeddings@latest code: '../src' command: >- python -m azureml.rag.tasks.register_mlindex --storage-uri '${{inputs.storage_uri}}' $[[--asset-name '${{inputs.asset_name}}']] --output-asset-id ${{outputs.asset_id}}