assets/large_language_models/rag/components/update_acs_index/spec.yaml (44 lines of code) (raw):

$schema: https://azuremlschemas.azureedge.net/latest/commandComponent.schema.json type: command tags: Preview: "" version: 0.0.77 name: llm_rag_update_acs_index display_name: LLM - Update ACS Index is_deterministic: true description: | Uploads `embeddings` into Azure Cognitive Search instance specified in `acs_config`. The Index will be created if it doesn't exist. The Index will have the following fields populated: - "id", String, key=True - "content", String - "contentVector", Collection(Single) - "category", String - "url", String - "filepath", String - "content_hash", String - "meta_json_string", String "meta_json_string" contains all metadata for a document serialized as a JSON string. inputs: embeddings: type: uri_folder mode: direct description: "Embeddings output produced from parallel_create_embeddings." acs_config: type: string description: 'JSON string containing the ACS configuration. e.g. {"endpoint": "https://my-cog.search.windows.net", "index_name": "my-index", "api_version": "2021-04-30-Preview", "endpoint_key_name": "ACS-PROD-KEY"}' index_connection_id: type: string optional: true description: "The connection id of the ACS Index provider to use." outputs: index: type: uri_folder description: "Uri folder containing MLINdex yaml describing the newly created/updated ACS index" environment: azureml:llm-rag-embeddings@latest code: '../src/' command: >- python -m azureml.rag.tasks.update_acs --embeddings '${{inputs.embeddings}}' --acs_config '${{inputs.acs_config}}' --output '${{outputs.index}}' $[[--connection_id '${{inputs.index_connection_id}}']]