public static async Task SubmitAutoMLImageClassificationAsync()

in sdk/dotnet/AzureML-Samples-CSharp/Jobs/AutomlJob/AutoMLJobOperations.cs [374:481]


    public static async Task<MachineLearningJobResource> SubmitAutoMLImageClassificationAsync(
        ResourceGroupResource resourceGroup,
        string workspaceName,
        string id,
        string experimentName,
        string environmentId,
        string computeId)
    {
        Console.WriteLine("Creating an AutoML ImageClassification job...");
        MachineLearningWorkspaceResource ws = await resourceGroup.GetMachineLearningWorkspaces().GetAsync(workspaceName);

        // Upload the MLTable in the default workspaceblobstore.
        var trainData = new MLTableJobInput(new Uri("azureml://datastores/workspaceblobstore/paths/training-mltable-folder"))
        {
            Mode = InputDeliveryMode.EvalMount,
            Description = "Train data",
        };
        var validationData = new MLTableJobInput(new Uri("azureml://datastores/workspaceblobstore/paths/validation-mltable-folder"))
        {
            Mode = InputDeliveryMode.EvalDownload,
            Description = "Validation data",
        };

        var trainingData = new TrainingDataSettings(trainData);

        ImageVerticalDataSettings dataSettings = new ImageVerticalDataSettings("label", trainingData)
        {
            // TargetColumnName = "label",
            //TestData = new TestDataSettings()
            //{
            //    Data = testData,
            //    TestDataSize = .20,
            //},
            ValidationData = new ImageVerticalValidationDataSettings()
            {
                Data = validationData,
                // Validation size must be between 0.01 and 0.99 inclusive when specified. Test size must be between 0 and 0.99 inclusive when specified. Test split is not supported for task type: text-ner
                ValidationDataSize = 0.20,
            },
        };
        ImageLimitSettings limitSettings = new ImageLimitSettings()
        {
            MaxConcurrentTrials = 2,
            MaxTrials = 10,
            Timeout = TimeSpan.FromHours(2)
        };

        ImageSweepLimitSettings sweepLimits = new ImageSweepLimitSettings() { MaxConcurrentTrials = 4, MaxTrials = 20 };
        SamplingAlgorithmType samplingAlgorithm = SamplingAlgorithmType.Random;
        List<ImageModelDistributionSettingsClassification> searchSpaceList = new List<ImageModelDistributionSettingsClassification>()
            {
                new ImageModelDistributionSettingsClassification()
                {
                    ModelName = "choice('vitb16r224', 'vits16r224')",
                    LearningRate = "uniform(0.001, 0.01)",
                    NumberOfEpochs = "choice(15, 30)",
                },
                new ImageModelDistributionSettingsClassification()
                {
                    ModelName = "choice('seresnext', 'resnet50')",
                    LearningRate = "uniform(0.001, 0.01)",
                    NumberOfEpochs = "choice(0, 2)",
                }
            };

        AutoMLVertical taskDetails = new ImageClassification(dataSettings, limitSettings)
        {
            LogVerbosity = LogVerbosity.Info,
            PrimaryMetric = ClassificationPrimaryMetrics.Accuracy,
            SweepSettings = new ImageSweepSettings(sweepLimits, samplingAlgorithm)
            {
                EarlyTermination = new BanditPolicy() { SlackFactor = 0.2f, EvaluationInterval = 3 },
            },
            SearchSpace = searchSpaceList,
        };

        var autoMLJob = new AutoMLJob(taskDetails)
        {
            ExperimentName = experimentName,
            DisplayName = "AutoMLJob ImageClassification-" + Guid.NewGuid().ToString("n").Substring(0, 6),
            EnvironmentId = environmentId,
            IsArchived = false,
            ComputeId = computeId,
            Resources = new ResourceConfiguration
            {
                InstanceCount = 3,
            },
            Properties = new Dictionary<string, string>
                {
                    { "property-name", "property-value" },
                },
            Tags = new Dictionary<string, string>
                {
                    { "tag-name", "tag-value" },
                },
            EnvironmentVariables = new Dictionary<string, string>()
                {
                    { "env-var", "env-var-value" }
                },
            Description = "This is a description of test AutoMLJob for multi-class Image classification job using fridge items dataset",
        };

        MachineLearningJobData MachineLearningJobData = new MachineLearningJobData(autoMLJob);
        ArmOperation<MachineLearningJobResource> jobOperation = await ws.GetMachineLearningJobs().CreateOrUpdateAsync(WaitUntil.Completed, id, MachineLearningJobData);
        MachineLearningJobResource jobResource = jobOperation.Value;
        Console.WriteLine($"JobCreateOrUpdateOperation {jobResource.Data.Id} created.");
        return jobResource;
    }