in sdk/dotnet/AzureML-Samples-CSharp/Jobs/AutomlJob/AutoMLJobOperations.cs [374:481]
public static async Task<MachineLearningJobResource> SubmitAutoMLImageClassificationAsync(
ResourceGroupResource resourceGroup,
string workspaceName,
string id,
string experimentName,
string environmentId,
string computeId)
{
Console.WriteLine("Creating an AutoML ImageClassification job...");
MachineLearningWorkspaceResource ws = await resourceGroup.GetMachineLearningWorkspaces().GetAsync(workspaceName);
// Upload the MLTable in the default workspaceblobstore.
var trainData = new MLTableJobInput(new Uri("azureml://datastores/workspaceblobstore/paths/training-mltable-folder"))
{
Mode = InputDeliveryMode.EvalMount,
Description = "Train data",
};
var validationData = new MLTableJobInput(new Uri("azureml://datastores/workspaceblobstore/paths/validation-mltable-folder"))
{
Mode = InputDeliveryMode.EvalDownload,
Description = "Validation data",
};
var trainingData = new TrainingDataSettings(trainData);
ImageVerticalDataSettings dataSettings = new ImageVerticalDataSettings("label", trainingData)
{
// TargetColumnName = "label",
//TestData = new TestDataSettings()
//{
// Data = testData,
// TestDataSize = .20,
//},
ValidationData = new ImageVerticalValidationDataSettings()
{
Data = validationData,
// Validation size must be between 0.01 and 0.99 inclusive when specified. Test size must be between 0 and 0.99 inclusive when specified. Test split is not supported for task type: text-ner
ValidationDataSize = 0.20,
},
};
ImageLimitSettings limitSettings = new ImageLimitSettings()
{
MaxConcurrentTrials = 2,
MaxTrials = 10,
Timeout = TimeSpan.FromHours(2)
};
ImageSweepLimitSettings sweepLimits = new ImageSweepLimitSettings() { MaxConcurrentTrials = 4, MaxTrials = 20 };
SamplingAlgorithmType samplingAlgorithm = SamplingAlgorithmType.Random;
List<ImageModelDistributionSettingsClassification> searchSpaceList = new List<ImageModelDistributionSettingsClassification>()
{
new ImageModelDistributionSettingsClassification()
{
ModelName = "choice('vitb16r224', 'vits16r224')",
LearningRate = "uniform(0.001, 0.01)",
NumberOfEpochs = "choice(15, 30)",
},
new ImageModelDistributionSettingsClassification()
{
ModelName = "choice('seresnext', 'resnet50')",
LearningRate = "uniform(0.001, 0.01)",
NumberOfEpochs = "choice(0, 2)",
}
};
AutoMLVertical taskDetails = new ImageClassification(dataSettings, limitSettings)
{
LogVerbosity = LogVerbosity.Info,
PrimaryMetric = ClassificationPrimaryMetrics.Accuracy,
SweepSettings = new ImageSweepSettings(sweepLimits, samplingAlgorithm)
{
EarlyTermination = new BanditPolicy() { SlackFactor = 0.2f, EvaluationInterval = 3 },
},
SearchSpace = searchSpaceList,
};
var autoMLJob = new AutoMLJob(taskDetails)
{
ExperimentName = experimentName,
DisplayName = "AutoMLJob ImageClassification-" + Guid.NewGuid().ToString("n").Substring(0, 6),
EnvironmentId = environmentId,
IsArchived = false,
ComputeId = computeId,
Resources = new ResourceConfiguration
{
InstanceCount = 3,
},
Properties = new Dictionary<string, string>
{
{ "property-name", "property-value" },
},
Tags = new Dictionary<string, string>
{
{ "tag-name", "tag-value" },
},
EnvironmentVariables = new Dictionary<string, string>()
{
{ "env-var", "env-var-value" }
},
Description = "This is a description of test AutoMLJob for multi-class Image classification job using fridge items dataset",
};
MachineLearningJobData MachineLearningJobData = new MachineLearningJobData(autoMLJob);
ArmOperation<MachineLearningJobResource> jobOperation = await ws.GetMachineLearningJobs().CreateOrUpdateAsync(WaitUntil.Completed, id, MachineLearningJobData);
MachineLearningJobResource jobResource = jobOperation.Value;
Console.WriteLine($"JobCreateOrUpdateOperation {jobResource.Data.Id} created.");
return jobResource;
}