in sdk/python/jobs/pipelines/2e_image_classification_keras_minist_convnet/train/train.py [0:0]
def train(train_input, model_output, epochs):
train_file = get_file(train_input)
data_train = pd.read_csv(train_file, header=None)
X = np.array(data_train.iloc[:, 1:])
y = to_categorical(np.array(data_train.iloc[:, 0]))
img_rows, img_cols = 28, 28
input_shape = (img_rows, img_cols, 1)
# Split validation data to optimiza classifier during training
X_train, X_val, y_train, y_val = train_test_split(
X, y, test_size=0.2, random_state=13
)
X_train = (
X_train.reshape(X_train.shape[0], img_rows, img_cols, 1).astype("float32") / 255
)
X_val = X_val.reshape(X_val.shape[0], img_rows, img_cols, 1).astype("float32") / 255
batch_size = 256
num_classes = 10
epochs = epochs
# Construct neuron network
model = Sequential()
model.add(
Conv2D(
32,
kernel_size=(3, 3),
activation="relu",
kernel_initializer="he_normal",
input_shape=input_shape,
)
)
model.add(MaxPooling2D((2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(128, (3, 3), activation="relu"))
model.add(Dropout(0.4))
model.add(Flatten())
model.add(Dense(128, activation="relu"))
model.add(Dropout(0.3))
model.add(Dense(num_classes, activation="softmax"))
model.compile(
loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adam(),
metrics=["accuracy"],
)
# Log metrics
class LogRunMetrics(Callback):
# callback at the end of every epoch
def on_epoch_end(self, epoch, log):
# log a value repeated which creates a list
mlflow.log_metric("Loss", log["loss"])
mlflow.log_metric("Accuracy", log["accuracy"])
history = model.fit(
X_train,
y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(X_val, y_val),
callbacks=[LogRunMetrics()],
)
# Log an image for training loss and accuracy
fig = plt.figure(figsize=(6, 3))
plt.title("Fashion MNIST with Keras ({} epochs)".format(epochs), fontsize=14)
plt.plot(history.history["accuracy"], "b-", label="Accuracy", lw=4, alpha=0.5)
plt.plot(history.history["loss"], "r--", label="Loss", lw=4, alpha=0.5)
plt.legend(fontsize=12)
plt.grid(True)
mlflow.log_figure(fig, "Loss v.s. Accuracy.png")
# Output model file
model.save(model_output + "/image_classification_model.h5")