in sdk/python/foundation-models/system/inference/text-generation/llama-files/score/default/score.py [0:0]
def parse_model_input_from_input_data_traditional(input_data):
# Format input
if isinstance(input_data, str):
input_data = json.loads(input_data)
if "input_data" in input_data:
input_data = input_data["input_data"]
if is_hfv2:
input = input_data
elif isinstance(input_data, list):
# if a list, assume the input is a numpy array
input = np.asarray(input_data)
elif (
isinstance(input_data, dict)
and "columns" in input_data
and "index" in input_data
and "data" in input_data
):
# if the dictionary follows pandas split column format, deserialize into a pandas Dataframe
input = pd.read_json(json.dumps(input_data), orient="split", dtype=False)
else:
# otherwise, assume input is a named tensor, and deserialize into a dict[str, numpy.ndarray]
input = {
input_name: np.asarray(input_value)
for input_name, input_value in input_data.items()
}
return input