cli/foundation-models/system/distillation/conversation/distillation_conversation.yaml (36 lines of code) (raw):

type: distillation name: "Distillation-conversation-llama" description: "Distill student model using a teacher model" experiment_name: "Distillation-Conversation" # Data Generation Properties data_generation_type: label_generation data_generation_task_type: conversation # Input data training_data: type: uri_file path: ./train_conversation.jsonl validation_data: type: uri_file path: ./validation_conversation.jsonl # Teacher model serverless endpoint information # REPLACE WITH YOUR ENDPOINT INFORMATION teacher_model_endpoint_connection: type: serverless name: Meta-Llama-3-1-405B-Instruct-vkn endpoint: https://Meta-Llama-3-1-405B-Instruct-vkn.westus3.models.ai.azure.com/chat/completions api_key: EXAMPLE_API_KEY # Model ID student_model: azureml://registries/azureml-meta/models/Meta-Llama-3.1-8B-Instruct/versions/2 # Output distilled model outputs: registered_model: type: mlflow_model name: llama-conversation-distilled # Teacher model related properties (OPTIONAL) teacher_model_settings: inference_parameters: temperature: 0.1 max_tokens: 100 top_p: 0.95 endpoint_request_settings: request_batch_size: 10 min_endpoint_success_ratio: 0.7 # For finetuning (OPTIONAL) hyperparameters: learning_rate_multiplier: "0.2" n_epochs: "5" batch_size: "2" # Resource for Data Generation Step (OPTIONAL) resources: instance_type: Standard_D2_v2