cli/jobs/parallel/3a_mnist_batch_identification/mnist_models/mnist-tf.model.meta (1,297 lines of code) (raw):
��
:
Add
x"T
y"T
z"T"
Ttype:
2
�
ApplyGradientDescent
var"T�
alpha"T
delta"T
out"T�"
Ttype:
2
"
use_lockingbool(
x
Assign
ref"T�
value"T
output_ref"T�"
Ttype"
validate_shapebool("
use_lockingbool(�
~
BiasAdd
value"T
bias"T
output"T"
Ttype:
2
"-
data_formatstringNHWC:
NHWCNCHW
~
BiasAddGrad
out_backprop"T
output"T"
Ttype:
2
"-
data_formatstringNHWC:
NHWCNCHW
N
Cast
x"SrcT
y"DstT"
SrcTtype"
DstTtype"
Truncatebool(
8
Const
output"dtype"
valuetensor"
dtypetype
W
ExpandDims
input"T
dim"Tdim
output"T"
Ttype"
Tdimtype0:
2
^
Fill
dims"
index_type
value"T
output"T"
Ttype"
index_typetype0:
2
?
FloorDiv
x"T
y"T
z"T"
Ttype:
2
.
Identity
input"T
output"T"
Ttype
W
InTopKV2
predictions
targets"T
k"T
precision
"
Ttype0:
2
q
MatMul
a"T
b"T
product"T"
transpose_abool( "
transpose_bbool( "
Ttype:
2
;
Maximum
x"T
y"T
z"T"
Ttype:
2 �
�
Mean
input"T
reduction_indices"Tidx
output"T"
keep_dimsbool( "
Ttype:
2
"
Tidxtype0:
2
=
Mul
x"T
y"T
z"T"
Ttype:
2 �
NoOp
C
Placeholder
output"dtype"
dtypetype"
shapeshape:
X
PlaceholderWithDefault
input"dtype
output"dtype"
dtypetype"
shapeshape
L
PreventGradient
input"T
output"T"
Ttype"
messagestring
�
Prod
input"T
reduction_indices"Tidx
output"T"
keep_dimsbool( "
Ttype:
2
"
Tidxtype0:
2
~
RandomUniform
shape"T
output"dtype"
seedint "
seed2int "
dtypetype:
2"
Ttype:
2 �
>
RealDiv
x"T
y"T
z"T"
Ttype:
2
E
Relu
features"T
activations"T"
Ttype:
2
V
ReluGrad
gradients"T
features"T
backprops"T"
Ttype:
2
[
Reshape
tensor"T
shape"Tshape
output"T"
Ttype"
Tshapetype0:
2
o
RestoreV2
prefix
tensor_names
shape_and_slices
tensors2dtypes"
dtypes
list(type)(0�
l
SaveV2
prefix
tensor_names
shape_and_slices
tensors2dtypes"
dtypes
list(type)(0�
P
Shape
input"T
output"out_type"
Ttype"
out_typetype0:
2
�
#SparseSoftmaxCrossEntropyWithLogits
features"T
labels"Tlabels
loss"T
backprop"T"
Ttype:
2"
Tlabelstype0 :
2
:
Sub
x"T
y"T
z"T"
Ttype:
2
c
Tile
input"T
multiples"
Tmultiples
output"T"
Ttype"
Tmultiplestype0:
2
s
VariableV2
ref"dtype�"
shapeshape"
dtypetype"
containerstring "
shared_namestring �
&
ZerosLike
x"T
y"T"
Ttype*1.13.12b'v1.13.1-0-g6612da8951'��
n
network/XPlaceholder*(
_output_shapes
:����������*
shape:����������*
dtype0
N
network/yPlaceholder*
_output_shapes
:*
shape:*
dtype0
�
*h1/kernel/Initializer/random_uniform/shapeConst*
_class
loc:@h1/kernel*
valueB" , *
dtype0*
_output_shapes
:
�
(h1/kernel/Initializer/random_uniform/minConst*
_class
loc:@h1/kernel*
valueB
*�]��*
dtype0*
_output_shapes
:
�
(h1/kernel/Initializer/random_uniform/maxConst*
dtype0*
_output_shapes
: *
_class
loc:@h1/kernel*
valueB
*�]�=
�
2h1/kernel/Initializer/random_uniform/RandomUniform
RandomUniform*h1/kernel/Initializer/random_uniform/shape*
T0*
_class
loc:@h1/kernel*
seed2 *
dtype0*
_output_shapes
:
��*
seed
�
(h1/kernel/Initializer/random_uniform/subSub(h1/kernel/Initializer/random_uniform/max(h1/kernel/Initializer/random_uniform/min*
_output_shapes
: *
T0*
_class
loc:@h1/kernel
�
(h1/kernel/Initializer/random_uniform/mulMul2h1/kernel/Initializer/random_uniform/RandomUniform(h1/kernel/Initializer/random_uniform/sub*
T0*
_class
loc:@h1/kernel*
_output_shapes
:
��
�
$h1/kernel/Initializer/random_uniformAdd(h1/kernel/Initializer/random_uniform/mul(h1/kernel/Initializer/random_uniform/min*
_output_shapes
:
��*
T0*
_class
loc:@h1/kernel
�
h1/kernel
VariableV2*
_class
loc:@h1/kernel*
container *
shape:
��*
dtype0*
_output_shapes
:
��*
shared_name
�
h1/kernel/AssignAssign h1/kernel$h1/kernel/Initializer/random_uniform*
use_locking(*
T0*
_class
loc:@h1/kernel*
validate_shape(*
_output_shapes
:
��
n
h1/kernel/readIdentity h1/kernel*
_output_shapes
:
��*
T0*
_class
loc:@h1/kernel
�
h1/bias/Initializer/zerosConst*
_class
loc:@h1/bias*
valueB�* *
dtype0*
_output_shapes
:�
�
h1/bias
VariableV2*
container *
shape:�*
dtype0*
_output_shapes
:�*
shared_name *
_class
loc:@h1/bias
�
h1/bias/AssignAssignh1/biash1/bias/Initializer/zeros*
use_locking(*
T0*
_class
loc:@h1/bias*
validate_shape(*
_output_shapes
:�
c
h1/bias/readIdentityh1/bias*
_output_shapes
:�*
T0*
_class
loc:@h1/bias
�
network/h1/MatMulMatMul network/Xh1/kernel/read*
transpose_a( *(
_output_shapes
:����������*
transpose_b( *
T0
�
network/h1/BiasAddBiasAddnetwork/h1/MatMulh1/bias/read*
T0*
data_formatNHWC*(
_output_shapes
:����������
^
network/h1/ReluRelunetwork/h1/BiasAdd*
T0*(
_output_shapes
:����������
�
*h2/kernel/Initializer/random_uniform/shapeConst*
_class
loc:@h2/kernel*
valueB", d *
dtype0*
_output_shapes
:
�
(h2/kernel/Initializer/random_uniform/minConst*
_output_shapes
: *
_class
loc:@h2/kernel*
valueB
*����*
dtype0
�
(h2/kernel/Initializer/random_uniform/maxConst*
_class
loc:@h2/kernel*
valueB
*���=*
dtype0*
_output_shapes
:
�
2h2/kernel/Initializer/random_uniform/RandomUniform
RandomUniform*h2/kernel/Initializer/random_uniform/shape*
dtype0*
_output_shapes
: �d*
seed *
T0*
_class
loc:@h2/kernel*
seed2
�
(h2/kernel/Initializer/random_uniform/subSub(h2/kernel/Initializer/random_uniform/max(h2/kernel/Initializer/random_uniform/min*
_output_shapes
: *
T0*
_class
loc:@h2/kernel
�
(h2/kernel/Initializer/random_uniform/mulMul2h2/kernel/Initializer/random_uniform/RandomUniform(h2/kernel/Initializer/random_uniform/sub*
_class
loc:@h2/kernel*
_output_shapes
: �d*
T0
�
$h2/kernel/Initializer/random_uniformAdd(h2/kernel/Initializer/random_uniform/mul(h2/kernel/Initializer/random_uniform/min*
T0*
_class
loc:@h2/kernel*
_output_shapes
: �d
�
h2/kernel
VariableV2*
shape: �d*
dtype0*
_output_shapes
: �d*
shared_name *
_class
loc:@h2/kernel*
container
�
h2/kernel/AssignAssign h2/kernel$h2/kernel/Initializer/random_uniform*
validate_shape(*
_output_shapes
: �d*
use_locking(*
T0*
_class
loc:@h2/kernel
m
h2/kernel/readIdentity h2/kernel*
T0*
_class
loc:@h2/kernel*
_output_shapes
: �d
�
h2/bias/Initializer/zerosConst*
dtype0*
_output_shapes
:d*
_class
loc:@h2/bias*
valueBd*
�
h2/bias
VariableV2*
_output_shapes
:d*
shared_name *
_class
loc:@h2/bias*
container *
shape:d*
dtype0
�
h2/bias/AssignAssignh2/biash2/bias/Initializer/zeros*
_class
loc:@h2/bias*
validate_shape(*
_output_shapes
:d*
use_locking(*
T0
b
h2/bias/readIdentityh2/bias*
_class
loc:@h2/bias*
_output_shapes
:d*
T0
�
network/h2/MatMulMatMulnetwork/h1/Reluh2/kernel/read*
T0*
transpose_a( *'
_output_shapes
:���������d*
transpose_b(
�
network/h2/BiasAddBiasAddnetwork/h2/MatMulh2/bias/read*
T0*
data_formatNHWC*'
_output_shapes
:���������d
]
network/h2/ReluRelunetwork/h2/BiasAdd*'
_output_shapes
:���������d*
T0
�
.output/kernel/Initializer/random_uniform/shapeConst*
_class
loc:@output/kernel*
valueB"d
*
dtype0*
_output_shapes
:
�
,output/kernel/Initializer/random_uniform/minConst*
_class
loc:@output/kernel*
valueB
*�'o�*
dtype0*
_output_shapes
:
�
,output/kernel/Initializer/random_uniform/maxConst*
_output_shapes
: *
_class
loc:@output/kernel*
valueB
*�'o>*
dtype0
�
6output/kernel/Initializer/random_uniform/RandomUniform
RandomUniform.output/kernel/Initializer/random_uniform/shape*
dtype0*
_output_shapes
:d
*
seed *
T0*
_class
loc:@output/kernel*
seed2
�
,output/kernel/Initializer/random_uniform/subSub,output/kernel/Initializer/random_uniform/max,output/kernel/Initializer/random_uniform/min*
T0*
_class
loc:@output/kernel*
_output_shapes
:
�
,output/kernel/Initializer/random_uniform/mulMul6output/kernel/Initializer/random_uniform/RandomUniform,output/kernel/Initializer/random_uniform/sub*
_output_shapes
:d
*
T0*
_class
loc:@output/kernel
�
(output/kernel/Initializer/random_uniformAdd,output/kernel/Initializer/random_uniform/mul,output/kernel/Initializer/random_uniform/min*
T0*
_class
loc:@output/kernel*
_output_shapes
:d
�
output/kernel
VariableV2*
shared_name *
_class
loc:@output/kernel*
container *
shape
:d
*
dtype0*
_output_shapes
:d
�
output/kernel/AssignAssign
output/kernel(output/kernel/Initializer/random_uniform*
T0*
_class
loc:@output/kernel*
validate_shape(*
_output_shapes
:d
*
use_locking(
x
output/kernel/readIdentity
output/kernel*
T0*
_class
loc:@output/kernel*
_output_shapes
:d
�
output/bias/Initializer/zerosConst*
_class
loc:@output/bias*
valueB
* *
dtype0*
_output_shapes
:
�
output/bias
VariableV2*
shared_name *
_class
loc:@output/bias*
container *
shape:
*
dtype0*
_output_shapes
:
�
output/bias/AssignAssignoutput/biasoutput/bias/Initializer/zeros*
validate_shape(*
_output_shapes
:
*
use_locking(*
T0*
_class
loc:@output/bias
n
output/bias/readIdentityoutput/bias*
T0*
_class
loc:@output/bias*
_output_shapes
:
�
network/output/MatMulMatMulnetwork/h2/Reluoutput/kernel/read*
transpose_a( *'
_output_shapes
:���������
*
transpose_b( *
T0
�
network/output/BiasAddBiasAddnetwork/output/MatMuloutput/bias/read*
data_formatNHWC*'
_output_shapes
:���������
*
T0
�
/train/SparseSoftmaxCrossEntropyWithLogits/ShapeShape network/y*#
_output_shapes
:
���������*
T0 *
out_type0
�
Mtrain/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits#SparseSoftmaxCrossEntropyWithLogitsnetwork/output/BiasAdd network/y*
T0*
Tlabels0 *6
_output_shapes$
":
���������:���������
U
train/ConstConst*
_output_shapes
:*
value
B: *
dtype0
�
train/lossMeanMtrain/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogitstrain/Const*
Tidx0*
keep_dims( *
T0*
_output_shapes
:
X
train/gradients/ShapeConst*
valueB *
dtype0*
_output_shapes
:
^
train/gradients/grad_ys_0Const*
valueB
* �?*
dtype0*
_output_shapes
:
�
train/gradients/FillFilltrain/gradients/Shapetrain/gradients/grad_ys_0*
T0*
index_type0*
_output_shapes
:
w
-train/gradients/train/loss_grad/Reshape/shapeConst*
value
B:*
dtype0*
_output_shapes
:
�
'train/gradients/train/loss_grad/ReshapeReshapetrain/gradients/Fill-train/gradients/train/loss_grad/Reshape/shape*
T0*
Tshape0*
_output_shapes
:
�
%train/gradients/train/loss_grad/ShapeShapeMtrain/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits*
_output_shapes
:*
T0*
out_type0
�
$train/gradients/train/loss_grad/TileTile'train/gradients/train/loss_grad/Reshape%train/gradients/train/loss_grad/Shape*
Tmultiples0*
T0*#
_output_shapes
:
���������
�
'train/gradients/train/loss_grad/Shape_1ShapeMtrain/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits*
T0*
out_type0*
_output_shapes
:
j
'train/gradients/train/loss_grad/Shape_2Const*
valueB *
dtype0*
_output_shapes
:
o
%train/gradients/train/loss_grad/ConstConst*
value
B: *
dtype0*
_output_shapes
:
�
$train/gradients/train/loss_grad/ProdProd'train/gradients/train/loss_grad/Shape_1%train/gradients/train/loss_grad/Const*
T0*
_output_shapes
: *
Tidx0*
keep_dims(
q
'train/gradients/train/loss_grad/Const_1Const*
value
B: *
dtype0*
_output_shapes
:
�
&train/gradients/train/loss_grad/Prod_1Prod'train/gradients/train/loss_grad/Shape_2'train/gradients/train/loss_grad/Const_1*
_output_shapes
: *
Tidx0*
keep_dims( *
T0
k
)train/gradients/train/loss_grad/Maximum/yConst*
dtype0*
_output_shapes
: *
value B :
�
'train/gradients/train/loss_grad/MaximumMaximum&train/gradients/train/loss_grad/Prod_1)train/gradients/train/loss_grad/Maximum/y*
_output_shapes
: *
T0
�
(train/gradients/train/loss_grad/floordivFloorDiv$train/gradients/train/loss_grad/Prod'train/gradients/train/loss_grad/Maximum*
_output_shapes
: *
T0
�
$train/gradients/train/loss_grad/CastCast(train/gradients/train/loss_grad/floordiv*
SrcT0*
Truncate( *
DstT0*
_output_shapes
:
�
'train/gradients/train/loss_grad/truedivRealDiv$train/gradients/train/loss_grad/Tile$train/gradients/train/loss_grad/Cast*#
_output_shapes
:
���������*
T0
�
train/gradients/zeros_like ZerosLikeOtrain/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits:1*
T0*'
_output_shapes
:���������
�
rtrain/gradients/train/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits_grad/PreventGradientPreventGradientOtrain/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits:1*
T0*'
_output_shapes
:���������
*�
message��Currently there is no way to take the second derivative of sparse_softmax_cross_entropy_with_logits due to the fused implementation's interaction with tf.gradients()
�
qtrain/gradients/train/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits_grad/ExpandDims/dimConst*
valueB :
���������*
dtype0*
_output_shapes
:
�
mtrain/gradients/train/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits_grad/ExpandDims
ExpandDims'train/gradients/train/loss_grad/truedivqtrain/gradients/train/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits_grad/ExpandDims/dim*'
_output_shapes
:���������*
Tdim0*
T0
�
ftrain/gradients/train/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits_grad/mulMulmtrain/gradients/train/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits_grad/ExpandDimsrtrain/gradients/train/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits_grad/PreventGradient*
T0*'
_output_shapes
:���������
�
7train/gradients/network/output/BiasAdd_grad/BiasAddGradBiasAddGradftrain/gradients/train/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits_grad/mul*
T0*
data_formatNHWC*
_output_shapes
:
�
<train/gradients/network/output/BiasAdd_grad/tuple/group_depsNoOp8^train/gradients/network/output/BiasAdd_grad/BiasAddGradg^train/gradients/train/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits_grad/mul
�
Dtrain/gradients/network/output/BiasAdd_grad/tuple/control_dependencyIdentityftrain/gradients/train/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits_grad/mul=^train/gradients/network/output/BiasAdd_grad/tuple/group_deps*
T0*y
_classo
mkloc:@train/gradients/train/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits_grad/mul*'
_output_shapes
:���������
�
Ftrain/gradients/network/output/BiasAdd_grad/tuple/control_dependency_1Identity7train/gradients/network/output/BiasAdd_grad/BiasAddGrad=^train/gradients/network/output/BiasAdd_grad/tuple/group_deps*
T0*J
_class@
><loc:@train/gradients/network/output/BiasAdd_grad/BiasAddGrad*
_output_shapes
:
�
1train/gradients/network/output/MatMul_grad/MatMulMatMulDtrain/gradients/network/output/BiasAdd_grad/tuple/control_dependencyoutput/kernel/read*
transpose_a( *'
_output_shapes
:���������d*
transpose_b(*
T0
�
3train/gradients/network/output/MatMul_grad/MatMul_1MatMulnetwork/h2/ReluDtrain/gradients/network/output/BiasAdd_grad/tuple/control_dependency*
T0*
transpose_a(*
_output_shapes
:d
*
transpose_b(
�
;train/gradients/network/output/MatMul_grad/tuple/group_depsNoOp2^train/gradients/network/output/MatMul_grad/MatMul4^train/gradients/network/output/MatMul_grad/MatMul_1
�
Ctrain/gradients/network/output/MatMul_grad/tuple/control_dependencyIdentity1train/gradients/network/output/MatMul_grad/MatMul<^train/gradients/network/output/MatMul_grad/tuple/group_deps*
T0*D
_class:
86loc:@train/gradients/network/output/MatMul_grad/MatMul*'
_output_shapes
:���������d
�
Etrain/gradients/network/output/MatMul_grad/tuple/control_dependency_1Identity3train/gradients/network/output/MatMul_grad/MatMul_1<^train/gradients/network/output/MatMul_grad/tuple/group_deps*
T0*F
_class<
:8loc:@train/gradients/network/output/MatMul_grad/MatMul_1*
_output_shapes
:d
�
-train/gradients/network/h2/Relu_grad/ReluGradReluGradCtrain/gradients/network/output/MatMul_grad/tuple/control_dependencynetwork/h2/Relu*
T0*'
_output_shapes
:���������d
�
3train/gradients/network/h2/BiasAdd_grad/BiasAddGradBiasAddGrad-train/gradients/network/h2/Relu_grad/ReluGrad*
T0*
data_formatNHWC*
_output_shapes
:d
�
8train/gradients/network/h2/BiasAdd_grad/tuple/group_depsNoOp4^train/gradients/network/h2/BiasAdd_grad/BiasAddGrad.^train/gradients/network/h2/Relu_grad/ReluGrad
�
@train/gradients/network/h2/BiasAdd_grad/tuple/control_dependencyIdentity-train/gradients/network/h2/Relu_grad/ReluGrad9^train/gradients/network/h2/BiasAdd_grad/tuple/group_deps*
T0*@
_class6
42loc:@train/gradients/network/h2/Relu_grad/ReluGrad*'
_output_shapes
:���������d
�
Btrain/gradients/network/h2/BiasAdd_grad/tuple/control_dependency_1Identity3train/gradients/network/h2/BiasAdd_grad/BiasAddGrad9^train/gradients/network/h2/BiasAdd_grad/tuple/group_deps*
T0*F
_class<
:8loc:@train/gradients/network/h2/BiasAdd_grad/BiasAddGrad*
_output_shapes
:d
�
-train/gradients/network/h2/MatMul_grad/MatMulMatMul@train/gradients/network/h2/BiasAdd_grad/tuple/control_dependencyh2/kernel/read*
T0*
transpose_a( *(
_output_shapes
:����������*
transpose_b(
�
/train/gradients/network/h2/MatMul_grad/MatMul_1MatMulnetwork/h1/Relu@train/gradients/network/h2/BiasAdd_grad/tuple/control_dependency*
transpose_a(*
_output_shapes
: �d*
transpose_b( *
T0
�
7train/gradients/network/h2/MatMul_grad/tuple/group_depsNoOp.^train/gradients/network/h2/MatMul_grad/MatMul0^train/gradients/network/h2/MatMul_grad/MatMul_1
�
?train/gradients/network/h2/MatMul_grad/tuple/control_dependencyIdentity-train/gradients/network/h2/MatMul_grad/MatMul8^train/gradients/network/h2/MatMul_grad/tuple/group_deps*
T0*@
_class6
42loc:@train/gradients/network/h2/MatMul_grad/MatMul*(
_output_shapes
:����������
�
Atrain/gradients/network/h2/MatMul_grad/tuple/control_dependency_1Identity/train/gradients/network/h2/MatMul_grad/MatMul_18^train/gradients/network/h2/MatMul_grad/tuple/group_deps*
T0*B
_class8
64loc:@train/gradients/network/h2/MatMul_grad/MatMul_1*
_output_shapes
: �d
�
-train/gradients/network/h1/Relu_grad/ReluGradReluGrad?train/gradients/network/h2/MatMul_grad/tuple/control_dependencynetwork/h1/Relu*
T0*(
_output_shapes
:����������
�
3train/gradients/network/h1/BiasAdd_grad/BiasAddGradBiasAddGrad-train/gradients/network/h1/Relu_grad/ReluGrad*
T0*
data_formatNHWC*
_output_shapes
:�
�
8train/gradients/network/h1/BiasAdd_grad/tuple/group_depsNoOp4^train/gradients/network/h1/BiasAdd_grad/BiasAddGrad.^train/gradients/network/h1/Relu_grad/ReluGrad
�
@train/gradients/network/h1/BiasAdd_grad/tuple/control_dependencyIdentity-train/gradients/network/h1/Relu_grad/ReluGrad9^train/gradients/network/h1/BiasAdd_grad/tuple/group_deps*
T0*@
_class6
42loc:@train/gradients/network/h1/Relu_grad/ReluGrad*(
_output_shapes
:����������
�
Btrain/gradients/network/h1/BiasAdd_grad/tuple/control_dependency_1Identity3train/gradients/network/h1/BiasAdd_grad/BiasAddGrad9^train/gradients/network/h1/BiasAdd_grad/tuple/group_deps*
_output_shapes
:�*
T0*F
_class<
:8loc:@train/gradients/network/h1/BiasAdd_grad/BiasAddGrad
�
-train/gradients/network/h1/MatMul_grad/MatMulMatMul@train/gradients/network/h1/BiasAdd_grad/tuple/control_dependencyh1/kernel/read*
T0*
transpose_a( *(
_output_shapes
:����������*
transpose_b(
�
/train/gradients/network/h1/MatMul_grad/MatMul_1MatMul network/X@train/gradients/network/h1/BiasAdd_grad/tuple/control_dependency*
T0*
transpose_a(*
_output_shapes
:
��*
transpose_b(
�
7train/gradients/network/h1/MatMul_grad/tuple/group_depsNoOp.^train/gradients/network/h1/MatMul_grad/MatMul0^train/gradients/network/h1/MatMul_grad/MatMul_1
�
?train/gradients/network/h1/MatMul_grad/tuple/control_dependencyIdentity-train/gradients/network/h1/MatMul_grad/MatMul8^train/gradients/network/h1/MatMul_grad/tuple/group_deps*(
_output_shapes
:����������*
T0*@
_class6
42loc:@train/gradients/network/h1/MatMul_grad/MatMul
�
Atrain/gradients/network/h1/MatMul_grad/tuple/control_dependency_1Identity/train/gradients/network/h1/MatMul_grad/MatMul_18^train/gradients/network/h1/MatMul_grad/tuple/group_deps*
T0*B
_class8
64loc:@train/gradients/network/h1/MatMul_grad/MatMul_1*
_output_shapes
:
��
h
#train/GradientDescent/learning_rateConst*
valueB
*
�#<*
dtype0*
_output_shapes
:
�
;train/GradientDescent/update_h1/kernel/ApplyGradientDescentApplyGradientDescent h1/kernel#train/GradientDescent/learning_rateAtrain/gradients/network/h1/MatMul_grad/tuple/control_dependency_1*
_output_shapes
:
��*
use_locking( *
T0*
_class
loc:@h1/kernel
�
9train/GradientDescent/update_h1/bias/ApplyGradientDescentApplyGradientDescenth1/bias#train/GradientDescent/learning_rateBtrain/gradients/network/h1/BiasAdd_grad/tuple/control_dependency_1*
T0*
_class
loc:@h1/bias*
_output_shapes
:�*
use_locking(
�
;train/GradientDescent/update_h2/kernel/ApplyGradientDescentApplyGradientDescent h2/kernel#train/GradientDescent/learning_rateAtrain/gradients/network/h2/MatMul_grad/tuple/control_dependency_1*
_output_shapes
: �d*
use_locking( *
T0*
_class
loc:@h2/kernel
�
9train/GradientDescent/update_h2/bias/ApplyGradientDescentApplyGradientDescenth2/bias#train/GradientDescent/learning_rateBtrain/gradients/network/h2/BiasAdd_grad/tuple/control_dependency_1*
use_locking( *
T0*
_class
loc:@h2/bias*
_output_shapes
:d
�
?train/GradientDescent/update_output/kernel/ApplyGradientDescentApplyGradientDescent
output/kernel#train/GradientDescent/learning_rateEtrain/gradients/network/output/MatMul_grad/tuple/control_dependency_1*
_output_shapes
:d
*
use_locking( *
T0*
_class
loc:@output/kernel
�
=train/GradientDescent/update_output/bias/ApplyGradientDescentApplyGradientDescentoutput/bias#train/GradientDescent/learning_rateFtrain/gradients/network/output/BiasAdd_grad/tuple/control_dependency_1*
T0*
_class
loc:@output/bias*
_output_shapes
:
*
use_locking(
�
train/GradientDescentNoOp:^train/GradientDescent/update_h1/bias/ApplyGradientDescent<^train/GradientDescent/update_h1/kernel/ApplyGradientDescent:^train/GradientDescent/update_h2/bias/ApplyGradientDescent<^train/GradientDescent/update_h2/kernel/ApplyGradientDescent>^train/GradientDescent/update_output/bias/ApplyGradientDescent@^train/GradientDescent/update_output/kernel/ApplyGradientDescent
Z
eval/in_top_k/InTopKV2/kConst*
value B R*
dtype0 *
_output_shapes
:
�
eval/in_top_k/InTopKV2InTopKV2network/output/BiasAdd network/yeval/in_top_k/InTopKV2/k*
T0 *#
_output_shapes
:
���������
v
eval/CastCasteval/in_top_k/InTopKV2*
SrcT0
*
Truncate( *
DstT0*#
_output_shapes
:
���������
T
eval/ConstConst*
value
B: *
dtype0*
_output_shapes
:
f
eval/MeanMean eval/Cast
eval/Const*
_output_shapes
: *
Tidx0*
keep_dims( *
T0
�
initNoOp^h1/bias/Assign^h1/kernel/Assign^h2/bias/Assign^h2/kernel/Assign^output/bias/Assign^output/kernel/Assign
Y
save/filename/inputConst*
value
B Bmodel*
dtype0*
_output_shapes
:
n
save/filenamePlaceholderWithDefaultsave/filename/input*
shape: *
dtype0*
_output_shapes
:
e
save/ConstPlaceholderWithDefault
save/filename*
shape: *
dtype0*
_output_shapes
:
�
save/SaveV2/tensor_namesConst*W
valueNBLBh1/biasB h1/kernelBh2/biasB h2/kernelBoutput/biasB
output/kernel*
dtype0*
_output_shapes
:
o
save/SaveV2/shape_and_slicesConst*
dtype0*
_output_shapes
:*
valueBB B B B B B
�
save/SaveV2SaveV2
save/Constsave/SaveV2/tensor_namessave/SaveV2/shape_and_slicesh1/bias h1/kernelh2/bias h2/kerneloutput/bias
output/kernel*
dtypes
2
}
save/control_dependencyIdentity
save/Const^save/SaveV2*
T0*
_class
loc:@save/Const*
_output_shapes
:
�
save/RestoreV2/tensor_namesConst"
/device:CPU:0*
_output_shapes
:*W
valueNBLBh1/biasB h1/kernelBh2/biasB h2/kernelBoutput/biasB
output/kernel*
dtype0
�
save/RestoreV2/shape_and_slicesConst"
/device:CPU:0*
valueBB B B B B B *
dtype0*
_output_shapes
:
�
save/RestoreV2 RestoreV2
save/Constsave/RestoreV2/tensor_namessave/RestoreV2/shape_and_slices"
/device:CPU:0*,
_output_shapes
::::::*
dtypes
2
�
save/AssignAssignh1/biassave/RestoreV2*
_class
loc:@h1/bias*
validate_shape(*
_output_shapes
:�*
use_locking(*
T0
�
save/Assign_1Assign h1/kernelsave/RestoreV2:1*
_class
loc:@h1/kernel*
validate_shape(*
_output_shapes
:
��*
use_locking(*
T0
�
save/Assign_2Assignh2/biassave/RestoreV2:2*
use_locking(*
T0*
_class
loc:@h2/bias*
validate_shape(*
_output_shapes
:d
�
save/Assign_3Assign h2/kernelsave/RestoreV2:3*
validate_shape(*
_output_shapes
: �d*
use_locking(*
T0*
_class
loc:@h2/kernel
�
save/Assign_4Assignoutput/biassave/RestoreV2:4*
use_locking(*
T0*
_class
loc:@output/bias*
validate_shape(*
_output_shapes
:
�
save/Assign_5Assign
output/kernelsave/RestoreV2:5*
use_locking(*
T0*
_class
loc:@output/kernel*
validate_shape(*
_output_shapes
:d
v
save/restore_allNoOp^save/Assign^save/Assign_1^save/Assign_2^save/Assign_3^save/Assign_4^save/Assign_5"D
save/Const:0save/control_dependency:0save/restore_all 5 @F8"%
train_op
train/GradientDescent"�
variables��
[
h1/kernel:0h1/kernel/Assignh1/kernel/read:02&h1/kernel/Initializer/random_uniform:08
J
h1/bias:0h1/bias/Assignh1/bias/read:02h1/bias/Initializer/zeros:08
[
h2/kernel:0h2/kernel/Assignh2/kernel/read:02&h2/kernel/Initializer/random_uniform:08
J
h2/bias:0h2/bias/Assignh2/bias/read:02h2/bias/Initializer/zeros:08
k
output/kernel:0output/kernel/Assignoutput/kernel/read:02*output/kernel/Initializer/random_uniform:08
Z
output/bias:0output/bias/Assignoutput/bias/read:02output/bias/Initializer/zeros:08"�
trainable_variables��
[
h1/kernel:0h1/kernel/Assignh1/kernel/read:02&h1/kernel/Initializer/random_uniform:08
J
h1/bias:0h1/bias/Assignh1/bias/read:02h1/bias/Initializer/zeros:08
[
h2/kernel:0h2/kernel/Assignh2/kernel/read:02&h2/kernel/Initializer/random_uniform:08
J
h2/bias:0h2/bias/Assignh2/bias/read:02h2/bias/Initializer/zeros:08
k
output/kernel:0output/kernel/Assignoutput/kernel/read:02*output/kernel/Initializer/random_uniform:08
Z
output/bias:0output/bias/Assignoutput/bias/read:02output/bias/Initializer/zeros:08