sdk/python/foundation-models/nvidia-nim-agent-samples/nvidia_nim_codeinterpreter.py (66 lines of code) (raw):

# pylint: disable=line-too-long,useless-suppression # ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ """ DESCRIPTION: This sample demonstrates how to use agent operations with code interpreter from the Azure Agents service using a synchronous client. This sample is for llama 3.3 70B Instruct NIM USAGE: python sample_agents_code_interpreter.py Before running the sample: pip install azure-ai-projects azure-identity Set these environment variables with your own values: 1) PROJECT_CONNECTION_STRING - The project connection string, as found in the overview page of your Azure AI Foundry project. 2) MODEL_DEPLOYMENT_NAME - The deployment name of the AI model, as found under the "Name" column in the "Models + endpoints" tab in your Azure AI Foundry project. """ import os from azure.ai.projects import AIProjectClient from azure.ai.projects.models import CodeInterpreterTool, FilePurpose, MessageRole from azure.identity import DefaultAzureCredential from pathlib import Path os.environ["PROJECT_CONNECTION_STRING"] = "<enter project connection string>" os.environ[ "MODEL_DEPLOYMENT_NAME" ] = "https://<endpoint-name>.<region>.inference.ml.azure.com/v1/@meta/llama-3.3-70b-instruct" project_client = AIProjectClient.from_connection_string( credential=DefaultAzureCredential(), conn_str=os.environ["PROJECT_CONNECTION_STRING"], ) with project_client: # Upload a file and wait for it to be processed # [START upload_file_and_create_agent_with_code_interpreter] file = project_client.agents.upload_file_and_poll( file_path="nifty_500_quarterly_results.csv", purpose=FilePurpose.AGENTS ) print(f"Uploaded file, file ID: {file.id}") code_interpreter = CodeInterpreterTool(file_ids=[file.id]) # Create agent with code interpreter tool and tools_resources agent = project_client.agents.create_agent( model=os.environ["MODEL_DEPLOYMENT_NAME"], name="my-assistant", instructions="You are helpful assistant", tools=code_interpreter.definitions, tool_resources=code_interpreter.resources, ) # [END upload_file_and_create_agent_with_code_interpreter] print(f"Created agent, agent ID: {agent.id}") thread = project_client.agents.create_thread() print(f"Created thread, thread ID: {thread.id}") # Create a message message = project_client.agents.create_message( thread_id=thread.id, role="user", content=( "Could you please create bar chart in TRANSPORTATION sector for the operating profit " "from the uploaded csv file and provide file to me? Use the column 'sector' in the uploaded csv." ), ) print(f"Created message, message ID: {message.id}") run = project_client.agents.create_and_process_run( thread_id=thread.id, agent_id=agent.id ) print(f"Run finished with status: {run.status}") if run.status == "failed": # Check if you got "Rate limit is exceeded.", then you want to get more quota print(f"Run failed: {run.last_error}") project_client.agents.delete_file(file.id) print("Deleted file") # [START get_messages_and_save_files] messages = project_client.agents.list_messages(thread_id=thread.id) print(f"Messages: {messages}") for image_content in messages.image_contents: file_id = image_content.image_file.file_id print(f"Image File ID: {file_id}") file_name = f"{file_id}_image_file.png" project_client.agents.save_file(file_id=file_id, file_name=file_name) print(f"Saved image file to: {Path.cwd() / file_name}") for file_path_annotation in messages.file_path_annotations: print(f"File Paths:") print(f"Type: {file_path_annotation.type}") print(f"Text: {file_path_annotation.text}") print(f"File ID: {file_path_annotation.file_path.file_id}") print(f"Start Index: {file_path_annotation.start_index}") print(f"End Index: {file_path_annotation.end_index}") # [END get_messages_and_save_files] last_msg = messages.get_last_text_message_by_role(MessageRole.AGENT) if last_msg: print(f"Last Message: {last_msg.text.value}") project_client.agents.delete_agent(agent.id) print("Deleted agent")