sdk/python/foundation-models/nvidia-nim-agent-samples/nvidia_nim_file_search.py (53 lines of code) (raw):

# ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ """ DESCRIPTION: This sample demonstrates how to use agent operations with file searching from the Azure Agents service using a synchronous client. The sample is for Llama 3.3 70B NIM USAGE: python sample_agents_file_search.py Before running the sample: pip install azure-ai-projects azure-identity Set these environment variables with your own values: 1) PROJECT_CONNECTION_STRING - The project connection string, as found in the overview page of your Azure AI Foundry project. 2) MODEL_DEPLOYMENT_NAME - The deployment name of the AI model, as found under the "Name" column in the "Models + endpoints" tab in your Azure AI Foundry project. """ import os from azure.ai.projects import AIProjectClient from azure.ai.projects.models import FileSearchTool from azure.identity import DefaultAzureCredential os.environ["PROJECT_CONNECTION_STRING"] = "<enter-project-connection-string>" os.environ[ "MODEL_DEPLOYMENT_NAME" ] = "https://<endpoint name>.<region>.inference.ml.azure.com/v1/@meta/llama-3.3-70b-instruct" project_client = AIProjectClient.from_connection_string( credential=DefaultAzureCredential(), conn_str=os.environ["PROJECT_CONNECTION_STRING"], ) with project_client: # Upload file and create vector store # [START upload_file_create_vector_store_and_agent_with_file_search_tool] file = project_client.agents.upload_file_and_poll( file_path="product_info_1.md", purpose="assistants" ) print(f"Uploaded file, file ID: {file.id}") vector_store = project_client.agents.create_vector_store_and_poll( file_ids=[file.id], name="my_vectorstore" ) print(f"Created vector store, vector store ID: {vector_store.id}") # Create file search tool with resources followed by creating agent file_search = FileSearchTool(vector_store_ids=[vector_store.id]) agent = project_client.agents.create_agent( model=os.environ["MODEL_DEPLOYMENT_NAME"], name="my-assistant", instructions="Hello, you are helpful assistant and can search information from uploaded files", tools=file_search.definitions, tool_resources=file_search.resources, ) # [END upload_file_create_vector_store_and_agent_with_file_search_tool] print(f"Created agent, ID: {agent.id}") # Create thread for communication thread = project_client.agents.create_thread() print(f"Created thread, ID: {thread.id}") # Create message to thread message = project_client.agents.create_message( thread_id=thread.id, role="user", content="Hello, what Contoso products do you know?", ) print(f"Created message, ID: {message.id}") # Create and process assistant run in thread with tools run = project_client.agents.create_and_process_run( thread_id=thread.id, agent_id=agent.id ) print(f"Run finished with status: {run.status}") if run.status == "failed": # Check if you got "Rate limit is exceeded.", then you want to get more quota print(f"Run failed: {run.last_error}") # [START teardown] # Delete the file when done project_client.agents.delete_vector_store(vector_store.id) print("Deleted vector store") project_client.agents.delete_file(file_id=file.id) print("Deleted file") # Delete the agent when done project_client.agents.delete_agent(agent.id) print("Deleted agent") # [END teardown] # Fetch and log all messages messages = project_client.agents.list_messages(thread_id=thread.id) # Print messages from the thread for text_message in messages.text_messages: print(text_message)