sdk/python/foundation-models/nvidia-nim-agent-samples/nvidia_nim_file_search.py (53 lines of code) (raw):
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""
DESCRIPTION:
This sample demonstrates how to use agent operations with file searching from
the Azure Agents service using a synchronous client.
The sample is for Llama 3.3 70B NIM
USAGE:
python sample_agents_file_search.py
Before running the sample:
pip install azure-ai-projects azure-identity
Set these environment variables with your own values:
1) PROJECT_CONNECTION_STRING - The project connection string, as found in the overview page of your
Azure AI Foundry project.
2) MODEL_DEPLOYMENT_NAME - The deployment name of the AI model, as found under the "Name" column in
the "Models + endpoints" tab in your Azure AI Foundry project.
"""
import os
from azure.ai.projects import AIProjectClient
from azure.ai.projects.models import FileSearchTool
from azure.identity import DefaultAzureCredential
os.environ["PROJECT_CONNECTION_STRING"] = "<enter-project-connection-string>"
os.environ[
"MODEL_DEPLOYMENT_NAME"
] = "https://<endpoint name>.<region>.inference.ml.azure.com/v1/@meta/llama-3.3-70b-instruct"
project_client = AIProjectClient.from_connection_string(
credential=DefaultAzureCredential(),
conn_str=os.environ["PROJECT_CONNECTION_STRING"],
)
with project_client:
# Upload file and create vector store
# [START upload_file_create_vector_store_and_agent_with_file_search_tool]
file = project_client.agents.upload_file_and_poll(
file_path="product_info_1.md", purpose="assistants"
)
print(f"Uploaded file, file ID: {file.id}")
vector_store = project_client.agents.create_vector_store_and_poll(
file_ids=[file.id], name="my_vectorstore"
)
print(f"Created vector store, vector store ID: {vector_store.id}")
# Create file search tool with resources followed by creating agent
file_search = FileSearchTool(vector_store_ids=[vector_store.id])
agent = project_client.agents.create_agent(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
name="my-assistant",
instructions="Hello, you are helpful assistant and can search information from uploaded files",
tools=file_search.definitions,
tool_resources=file_search.resources,
)
# [END upload_file_create_vector_store_and_agent_with_file_search_tool]
print(f"Created agent, ID: {agent.id}")
# Create thread for communication
thread = project_client.agents.create_thread()
print(f"Created thread, ID: {thread.id}")
# Create message to thread
message = project_client.agents.create_message(
thread_id=thread.id,
role="user",
content="Hello, what Contoso products do you know?",
)
print(f"Created message, ID: {message.id}")
# Create and process assistant run in thread with tools
run = project_client.agents.create_and_process_run(
thread_id=thread.id, agent_id=agent.id
)
print(f"Run finished with status: {run.status}")
if run.status == "failed":
# Check if you got "Rate limit is exceeded.", then you want to get more quota
print(f"Run failed: {run.last_error}")
# [START teardown]
# Delete the file when done
project_client.agents.delete_vector_store(vector_store.id)
print("Deleted vector store")
project_client.agents.delete_file(file_id=file.id)
print("Deleted file")
# Delete the agent when done
project_client.agents.delete_agent(agent.id)
print("Deleted agent")
# [END teardown]
# Fetch and log all messages
messages = project_client.agents.list_messages(thread_id=thread.id)
# Print messages from the thread
for text_message in messages.text_messages:
print(text_message)