sdk/python/foundation-models/nvidia-nim-agent-samples/nvidia_nim_no_tools.py (41 lines of code) (raw):
# pylint: disable=line-too-long,useless-suppression
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""
DESCRIPTION:
This sample demonstrates how to use agent operations with code interpreter from
the Azure Agents service using a synchronous client.
The sample is for Llama 3.3 70B NIM
USAGE:
python sample_agents_code_interpreter.py
Before running the sample:
pip install azure-ai-projects azure-identity
Set these environment variables with your own values:
1) PROJECT_CONNECTION_STRING - The project connection string, as found in the overview page of your
Azure AI Foundry project.
2) MODEL_DEPLOYMENT_NAME - The deployment name of the AI model, as found under the "Name" column in
the "Models + endpoints" tab in your Azure AI Foundry project.
"""
import os
from azure.ai.projects import AIProjectClient
from azure.ai.projects.models import CodeInterpreterTool, FilePurpose, MessageRole
from azure.identity import DefaultAzureCredential
from pathlib import Path
os.environ["PROJECT_CONNECTION_STRING"] = "<enter-project-connection-string>"
os.environ[
"MODEL_DEPLOYMENT_NAME"
] = "https://<endpoint name>.<region>.inference.ml.azure.com/v1/@meta/llama-3.3-70b-instruct"
project_client = AIProjectClient.from_connection_string(
credential=DefaultAzureCredential(),
conn_str=os.environ["PROJECT_CONNECTION_STRING"],
)
with project_client:
# Create agent
agent = project_client.agents.create_agent(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
name="my-assistant",
instructions="You are helpful assistant",
)
# [END upload_file_and_create_agent_with_code_interpreter]
print(f"Created agent, agent ID: {agent.id}")
thread = project_client.agents.create_thread()
print(f"Created thread, thread ID: {thread.id}")
# Create a message
message = project_client.agents.create_message(
thread_id=thread.id,
role="user",
content="When was the universe founded?",
)
print(f"Created message, message ID: {message.id}")
run = project_client.agents.create_and_process_run(
thread_id=thread.id, agent_id=agent.id
)
print(f"Run finished with status: {run.status}")
if run.status == "failed":
# Check if you got "Rate limit is exceeded.", then you want to get more quota
print(f"Run failed: {run.last_error}")
# [START get_messages_and_save_files]
messages = project_client.agents.list_messages(thread_id=thread.id)
print(f"Messages: {messages}")
last_msg = messages.get_last_text_message_by_role(MessageRole.AGENT)
if last_msg:
print(f"Last Message: {last_msg.text.value}")
project_client.agents.delete_agent(agent.id)
print("Deleted agent")