sdk/python/foundation-models/nvidia-nim-agent-samples/nvidia_nim_no_tools.py (41 lines of code) (raw):

# pylint: disable=line-too-long,useless-suppression # ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ """ DESCRIPTION: This sample demonstrates how to use agent operations with code interpreter from the Azure Agents service using a synchronous client. The sample is for Llama 3.3 70B NIM USAGE: python sample_agents_code_interpreter.py Before running the sample: pip install azure-ai-projects azure-identity Set these environment variables with your own values: 1) PROJECT_CONNECTION_STRING - The project connection string, as found in the overview page of your Azure AI Foundry project. 2) MODEL_DEPLOYMENT_NAME - The deployment name of the AI model, as found under the "Name" column in the "Models + endpoints" tab in your Azure AI Foundry project. """ import os from azure.ai.projects import AIProjectClient from azure.ai.projects.models import CodeInterpreterTool, FilePurpose, MessageRole from azure.identity import DefaultAzureCredential from pathlib import Path os.environ["PROJECT_CONNECTION_STRING"] = "<enter-project-connection-string>" os.environ[ "MODEL_DEPLOYMENT_NAME" ] = "https://<endpoint name>.<region>.inference.ml.azure.com/v1/@meta/llama-3.3-70b-instruct" project_client = AIProjectClient.from_connection_string( credential=DefaultAzureCredential(), conn_str=os.environ["PROJECT_CONNECTION_STRING"], ) with project_client: # Create agent agent = project_client.agents.create_agent( model=os.environ["MODEL_DEPLOYMENT_NAME"], name="my-assistant", instructions="You are helpful assistant", ) # [END upload_file_and_create_agent_with_code_interpreter] print(f"Created agent, agent ID: {agent.id}") thread = project_client.agents.create_thread() print(f"Created thread, thread ID: {thread.id}") # Create a message message = project_client.agents.create_message( thread_id=thread.id, role="user", content="When was the universe founded?", ) print(f"Created message, message ID: {message.id}") run = project_client.agents.create_and_process_run( thread_id=thread.id, agent_id=agent.id ) print(f"Run finished with status: {run.status}") if run.status == "failed": # Check if you got "Rate limit is exceeded.", then you want to get more quota print(f"Run failed: {run.last_error}") # [START get_messages_and_save_files] messages = project_client.agents.list_messages(thread_id=thread.id) print(f"Messages: {messages}") last_msg = messages.get_last_text_message_by_role(MessageRole.AGENT) if last_msg: print(f"Last Message: {last_msg.text.value}") project_client.agents.delete_agent(agent.id) print("Deleted agent")