sdk/python/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items/yolo_onnx_preprocessing_utils.py (184 lines of code) (raw):
import cv2
import numpy as np
import torch
import time
import torchvision
from PIL import Image
from typing import Any, Dict, List
def letterbox(
img,
new_shape=(640, 640),
color=(114, 114, 114),
auto=True,
scaleFill=False,
scaleup=True,
):
"""Resize image to a 32-pixel-multiple rectangle
https://github.com/ultralytics/yolov3/issues/232
:param img: an image
:type img: <class 'numpy.ndarray'>
:param new_shape: target shape in [height, width]
:type new_shape: <class 'int'>
:param color: color for pad area
:type color: <class 'tuple'>
:param auto: minimum rectangle
:type auto: bool
:param scaleFill: stretch the image without pad
:type scaleFill: bool
:param scaleup: scale up
:type scaleup: bool
:return: letterbox image, scale ratio, padded area in (width, height) in each side
:rtype: <class 'numpy.ndarray'>, <class 'tuple'>, <class 'tuple'>
"""
shape = img.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better test mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.copyMakeBorder(
img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color
) # add border
return img, ratio, (dw, dh)
def clip_coords(boxes, img_shape):
"""Clip bounding xyxy bounding boxes to image shape (height, width)
:param boxes: bbox
:type boxes: <class 'torch.Tensor'>
:return: img_shape: image shape
:rtype: img_shape: <class 'tuple'>: (height, width)
"""
boxes[:, 0].clamp_(0, img_shape[1]) # x1
boxes[:, 1].clamp_(0, img_shape[0]) # y1
boxes[:, 2].clamp_(0, img_shape[1]) # x2
boxes[:, 3].clamp_(0, img_shape[0]) # y2
def unpad_bbox(boxes, img_shape, pad):
"""Correct bbox coordinates by removing the padded area from letterbox image
:param boxes: bbox absolute coordinates from prediction
:type boxes: <class 'torch.Tensor'>
:param img_shape: image shape
:type img_shape: <class 'tuple'>: (height, width)
:param pad: pad used in letterbox image for inference
:type pad: <class 'tuple'>: (width, height)
:return: (unpadded) image height and width
:rtype: <class 'tuple'>: (height, width)
"""
dw, dh = pad
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
img_width = img_shape[1] - (left + right)
img_height = img_shape[0] - (top + bottom)
if boxes is not None:
boxes[:, 0] -= left
boxes[:, 1] -= top
boxes[:, 2] -= left
boxes[:, 3] -= top
clip_coords(boxes, (img_height, img_width))
return img_height, img_width
def _convert_to_rcnn_output(output, height, width, pad):
# output: nx6 (x1, y1, x2, y2, conf, cls)
rcnn_label: Dict[str, List[Any]] = {"boxes": [], "labels": [], "scores": []}
# Adjust bbox to effective image bounds
img_height, img_width = unpad_bbox(
output[:, :4] if output is not None else None, (height, width), pad
)
if output is not None:
rcnn_label["boxes"] = output[:, :4]
rcnn_label["labels"] = output[:, 5:6].long()
rcnn_label["scores"] = output[:, 4:5]
return rcnn_label, (img_height, img_width)
def xywh2xyxy(x):
"""Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
:param x: bbox coordinates in [x center, y center, w, h]
:type x: <class 'numpy.ndarray'> or torch.Tensor
:return: new bbox coordinates in [x1, y1, x2, y2]
:rtype: <class 'numpy.ndarray'> or torch.Tensor
"""
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y
def box_iou(box1, box2):
"""Return intersection-over-union (Jaccard index) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
:param box1: bbox in (Tensor[N, 4]), N for multiple bboxes and 4 for the box coordinates
:type box1: <class 'torch.Tensor'>
:param box2: bbox in (Tensor[M, 4]), M is for multiple bboxes
:type box2: <class 'torch.Tensor'>
:return: iou of box1 to box2 in (Tensor[N, M]), the NxM matrix containing the pairwise
IoU values for every element in boxes1 and boxes2
:rtype: <class 'torch.Tensor'>
"""
def box_area(box):
# box = 4xn
return (box[2] - box[0]) * (box[3] - box[1])
area1 = box_area(box1.t())
area2 = box_area(box2.t())
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
inter = (
(
torch.min(box1[:, None, 2:], box2[:, 2:])
- torch.max(box1[:, None, :2], box2[:, :2])
)
.clamp(0)
.prod(2)
)
return inter / (
area1[:, None] + area2 - inter
) # iou = inter / (area1 + area2 - inter)
def non_max_suppression(
prediction,
conf_thres=0.1,
iou_thres=0.6,
multi_label=False,
merge=False,
classes=None,
agnostic=False,
):
"""Performs per-class Non-Maximum Suppression (NMS) on inference results
:param prediction: predictions
:type prediction: <class 'torch.Tensor'>
:param conf_thres: confidence threshold
:type conf_thres: float
:param iou_thres: IoU threshold
:type iou_thres: float
:param multi_label: enable to have multiple labels in each box?
:type multi_label: bool
:param merge: Merge NMS (boxes merged using weighted mean)
:type merge: bool
:param classes: specific target class
:type classes:
:param agnostic: enable class agnostic NMS?
:type agnostic: bool
:return: detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
:rtype: <class 'list'>
"""
if prediction.dtype is torch.float16:
prediction = prediction.float() # to FP32
nc = prediction[0].shape[1] - 5 # number of classes
xc = prediction[..., 4] > conf_thres # candidates
# min_wh = 2
max_wh = 4096 # (pixels) maximum box width and height
max_det = 300 # maximum number of detections per image
time_limit = 10.0 # seconds to quit after
redundant = True # require redundant detections
if multi_label and nc < 2:
multi_label = False # multiple labels per box (adds 0.5ms/img)
t = time.time()
output = [None] * prediction.shape[0]
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[xc[xi]] # confidence
# If none remain process next image
if not x.shape[0]:
continue
# Compute conf
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
box = xywh2xyxy(x[:, :4])
# Detections matrix nx6 (xyxy, conf, cls)
if multi_label:
i, j = (x[:, 5:] > conf_thres).nonzero().t()
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
else: # best class only
conf, j = x[:, 5:].max(1, keepdim=True)
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
# Filter by class
if classes:
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
# Apply finite constraint
# if not torch.isfinite(x).all():
# x = x[torch.isfinite(x).all(1)]
# If none remain process next image
n = x.shape[0] # number of boxes
if not n:
continue
# Sort by confidence
# x = x[x[:, 4].argsort(descending=True)]
# Batched NMS
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
if i.shape[0] > max_det: # limit detections
i = i[:max_det]
if merge and (1 < n < 3e3):
try: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
weights = iou * scores[None] # box weights
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(
1, keepdim=True
) # merged boxes
if redundant:
i = i[iou.sum(1) > 1] # require redundancy
except Exception: # possible CUDA error https://github.com/ultralytics/yolov3/issues/1139
print(
"[WARNING: possible CUDA error ({} {} {} {})]".format(
x, i, x.shape, i.shape
)
)
pass
output[xi] = x[i]
if (time.time() - t) > time_limit:
break # time limit exceeded
return output
def _read_image(ignore_data_errors: bool, image_url: str, use_cv2: bool = False):
try:
if use_cv2:
# cv2 can return None in some error cases
img = cv2.imread(image_url) # BGR
if img is None:
print("cv2.imread returned None")
return img
else:
image = Image.open(image_url).convert("RGB")
return image
except Exception as ex:
if ignore_data_errors:
msg = "Exception occurred when trying to read the image. This file will be ignored."
print(msg)
else:
print(str(ex), has_pii=True)
return None
def preprocess(image_url, img_size=640):
img0 = _read_image(
ignore_data_errors=False, image_url=image_url, use_cv2=True
) # cv2.imread(image_url) # BGR
if img0 is None:
return image_url, None, None
img, ratio, pad = letterbox(img0, new_shape=img_size, auto=False, scaleup=False)
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x640x640
img = np.ascontiguousarray(img)
np_image = torch.from_numpy(img)
np_image = np.expand_dims(np_image, axis=0)
np_image = np_image.astype(np.float32) / 255.0
return np_image, pad