sdk/python/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items/yolo_onnx_preprocessing_utils.py (184 lines of code) (raw):

import cv2 import numpy as np import torch import time import torchvision from PIL import Image from typing import Any, Dict, List def letterbox( img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, ): """Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232 :param img: an image :type img: <class 'numpy.ndarray'> :param new_shape: target shape in [height, width] :type new_shape: <class 'int'> :param color: color for pad area :type color: <class 'tuple'> :param auto: minimum rectangle :type auto: bool :param scaleFill: stretch the image without pad :type scaleFill: bool :param scaleup: scale up :type scaleup: bool :return: letterbox image, scale ratio, padded area in (width, height) in each side :rtype: <class 'numpy.ndarray'>, <class 'tuple'>, <class 'tuple'> """ shape = img.shape[:2] # current shape [height, width] if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not scaleup: # only scale down, do not scale up (for better test mAP) r = min(r, 1.0) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if auto: # minimum rectangle dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding elif scaleFill: # stretch dw, dh = 0.0, 0.0 new_unpad = (new_shape[1], new_shape[0]) ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: # resize img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.copyMakeBorder( img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color ) # add border return img, ratio, (dw, dh) def clip_coords(boxes, img_shape): """Clip bounding xyxy bounding boxes to image shape (height, width) :param boxes: bbox :type boxes: <class 'torch.Tensor'> :return: img_shape: image shape :rtype: img_shape: <class 'tuple'>: (height, width) """ boxes[:, 0].clamp_(0, img_shape[1]) # x1 boxes[:, 1].clamp_(0, img_shape[0]) # y1 boxes[:, 2].clamp_(0, img_shape[1]) # x2 boxes[:, 3].clamp_(0, img_shape[0]) # y2 def unpad_bbox(boxes, img_shape, pad): """Correct bbox coordinates by removing the padded area from letterbox image :param boxes: bbox absolute coordinates from prediction :type boxes: <class 'torch.Tensor'> :param img_shape: image shape :type img_shape: <class 'tuple'>: (height, width) :param pad: pad used in letterbox image for inference :type pad: <class 'tuple'>: (width, height) :return: (unpadded) image height and width :rtype: <class 'tuple'>: (height, width) """ dw, dh = pad left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) img_width = img_shape[1] - (left + right) img_height = img_shape[0] - (top + bottom) if boxes is not None: boxes[:, 0] -= left boxes[:, 1] -= top boxes[:, 2] -= left boxes[:, 3] -= top clip_coords(boxes, (img_height, img_width)) return img_height, img_width def _convert_to_rcnn_output(output, height, width, pad): # output: nx6 (x1, y1, x2, y2, conf, cls) rcnn_label: Dict[str, List[Any]] = {"boxes": [], "labels": [], "scores": []} # Adjust bbox to effective image bounds img_height, img_width = unpad_bbox( output[:, :4] if output is not None else None, (height, width), pad ) if output is not None: rcnn_label["boxes"] = output[:, :4] rcnn_label["labels"] = output[:, 5:6].long() rcnn_label["scores"] = output[:, 4:5] return rcnn_label, (img_height, img_width) def xywh2xyxy(x): """Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right :param x: bbox coordinates in [x center, y center, w, h] :type x: <class 'numpy.ndarray'> or torch.Tensor :return: new bbox coordinates in [x1, y1, x2, y2] :rtype: <class 'numpy.ndarray'> or torch.Tensor """ y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y return y def box_iou(box1, box2): """Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py :param box1: bbox in (Tensor[N, 4]), N for multiple bboxes and 4 for the box coordinates :type box1: <class 'torch.Tensor'> :param box2: bbox in (Tensor[M, 4]), M is for multiple bboxes :type box2: <class 'torch.Tensor'> :return: iou of box1 to box2 in (Tensor[N, M]), the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2 :rtype: <class 'torch.Tensor'> """ def box_area(box): # box = 4xn return (box[2] - box[0]) * (box[3] - box[1]) area1 = box_area(box1.t()) area2 = box_area(box2.t()) # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) inter = ( ( torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2]) ) .clamp(0) .prod(2) ) return inter / ( area1[:, None] + area2 - inter ) # iou = inter / (area1 + area2 - inter) def non_max_suppression( prediction, conf_thres=0.1, iou_thres=0.6, multi_label=False, merge=False, classes=None, agnostic=False, ): """Performs per-class Non-Maximum Suppression (NMS) on inference results :param prediction: predictions :type prediction: <class 'torch.Tensor'> :param conf_thres: confidence threshold :type conf_thres: float :param iou_thres: IoU threshold :type iou_thres: float :param multi_label: enable to have multiple labels in each box? :type multi_label: bool :param merge: Merge NMS (boxes merged using weighted mean) :type merge: bool :param classes: specific target class :type classes: :param agnostic: enable class agnostic NMS? :type agnostic: bool :return: detections with shape: nx6 (x1, y1, x2, y2, conf, cls) :rtype: <class 'list'> """ if prediction.dtype is torch.float16: prediction = prediction.float() # to FP32 nc = prediction[0].shape[1] - 5 # number of classes xc = prediction[..., 4] > conf_thres # candidates # min_wh = 2 max_wh = 4096 # (pixels) maximum box width and height max_det = 300 # maximum number of detections per image time_limit = 10.0 # seconds to quit after redundant = True # require redundant detections if multi_label and nc < 2: multi_label = False # multiple labels per box (adds 0.5ms/img) t = time.time() output = [None] * prediction.shape[0] for xi, x in enumerate(prediction): # image index, image inference # Apply constraints # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height x = x[xc[xi]] # confidence # If none remain process next image if not x.shape[0]: continue # Compute conf x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf # Box (center x, center y, width, height) to (x1, y1, x2, y2) box = xywh2xyxy(x[:, :4]) # Detections matrix nx6 (xyxy, conf, cls) if multi_label: i, j = (x[:, 5:] > conf_thres).nonzero().t() x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) else: # best class only conf, j = x[:, 5:].max(1, keepdim=True) x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] # Filter by class if classes: x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] # Apply finite constraint # if not torch.isfinite(x).all(): # x = x[torch.isfinite(x).all(1)] # If none remain process next image n = x.shape[0] # number of boxes if not n: continue # Sort by confidence # x = x[x[:, 4].argsort(descending=True)] # Batched NMS c = x[:, 5:6] * (0 if agnostic else max_wh) # classes boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores i = torchvision.ops.boxes.nms(boxes, scores, iou_thres) if i.shape[0] > max_det: # limit detections i = i[:max_det] if merge and (1 < n < 3e3): try: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix weights = iou * scores[None] # box weights x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum( 1, keepdim=True ) # merged boxes if redundant: i = i[iou.sum(1) > 1] # require redundancy except Exception: # possible CUDA error https://github.com/ultralytics/yolov3/issues/1139 print( "[WARNING: possible CUDA error ({} {} {} {})]".format( x, i, x.shape, i.shape ) ) pass output[xi] = x[i] if (time.time() - t) > time_limit: break # time limit exceeded return output def _read_image(ignore_data_errors: bool, image_url: str, use_cv2: bool = False): try: if use_cv2: # cv2 can return None in some error cases img = cv2.imread(image_url) # BGR if img is None: print("cv2.imread returned None") return img else: image = Image.open(image_url).convert("RGB") return image except Exception as ex: if ignore_data_errors: msg = "Exception occurred when trying to read the image. This file will be ignored." print(msg) else: print(str(ex), has_pii=True) return None def preprocess(image_url, img_size=640): img0 = _read_image( ignore_data_errors=False, image_url=image_url, use_cv2=True ) # cv2.imread(image_url) # BGR if img0 is None: return image_url, None, None img, ratio, pad = letterbox(img0, new_shape=img_size, auto=False, scaleup=False) # Convert img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x640x640 img = np.ascontiguousarray(img) np_image = torch.from_numpy(img) np_image = np.expand_dims(np_image, axis=0) np_image = np_image.astype(np.float32) / 255.0 return np_image, pad