sdk/python/using-mlflow/deploy/model/model.pkl (857 lines of code) (raw):
��� �sklearn.pipeline��Pipeline���)��}�(�steps�]�(�encoding��#sklearn.compose._column_transformer��ColumnTransformer���)��}�(�transformers�]��cat_encoding��sklearn.preprocessing._encoders��OrdinalEncoder���)��}�(�
categories��auto��dtype��numpy��float64����handle_unknown��use_encoded_value��
unknown_value�G� �encoded_missing_value�G� �_sklearn_version��1.2.0�ub]��thal�a��a� remainder��passthrough��sparse_threshold�G?�333333�n_jobs�N�transformer_weights�N�verbose���verbose_feature_names_out���feature_names_in_��numpy.core.multiarray��_reconstruct���h�ndarray���K ��Cb���R�(KK
��hh���O8�����R�(K�|�NNNJ����J����K?t�b�]�(�age��sex��cp��trestbps��chol��fbs��restecg��thalach��exang��oldpeak��slope��ca��thal�et�b�n_features_in_�K
�_columns�]�h!a�_transformer_to_input_indices�}�(h]�Kah$]�(K KKKKKKKKK K
Keu�_n_features�K
�
_remainder�h$h%hQ���sparse_output_���_name_to_fitted_passthrough�}�h$�+sklearn.preprocessing._function_transformer��FunctionTransformer���)��}�(�func�N�inverse_func�N�validate���
accept_sparse���
check_inverse���feature_names_out��
one-to-one��kw_args�N�inv_kw_args�N�_sklearn_output_config�}�� transform��default�shKKh+h.h0K ��h2��R�(KK��h9�]�(h=h>h?h@hAhBhChDhEhFhGhHet�bhh ubs�
transformers_�]�(hh)��}�(hhhhhhhG� hG� hKKh+h.h0K ��h2��R�(KK��h9�]�hIat�b�categories_�]�h.h0K ��h2��R�(KK��h9�]�(�1��2��fixed��normal��
reversible�et�ba�_missing_indices�}�hh ubh!��h$h%hQ��e�output_indices_�}�(h�builtins��slice���K KN��R�h$h�KK
N��R�uhh ub���model��xgboost.sklearn��
XGBClassifier���)��}�(�use_label_encoder���n_estimators�Kd� objective��binary:logistic�� max_depth�N�
max_leaves�N�max_bin�N�grow_policy�N�
learning_rate�N� verbosity�N�booster�N�tree_method�N�gamma�N�min_child_weight�N�max_delta_step�N� subsample�N�sampling_method�N�colsample_bytree�N�colsample_bylevel�N�colsample_bynode�N� reg_alpha�N�
reg_lambda�N�scale_pos_weight�N�
base_score�N�missing�G� �num_parallel_tree�N�random_state�Nh'N�monotone_constraints�N�interaction_constraints�N�importance_type�N�gpu_id�N�validate_parameters�N� predictor�N�enable_categorical���
feature_types�N�max_cat_to_onehot�N�max_cat_threshold�N�eval_metric��logloss��early_stopping_rounds�N� callbacks�N�classes_�h.h0K ��h2��R�(KK��h6�i8�����R�(K�<�NNNJ����J����K t�b�C �t�b�
n_classes_�K�_Booster��xgboost.core��Booster���)��}�(�handle�h�� bytearray���B>� {L Config{L learner{L
generic_param{L fail_on_invalid_gpu_idSL 0L gpu_idSL -1L n_jobsSL 0L nthreadSL 0L random_stateSL 0L seedSL 0L seed_per_iterationSL 0L validate_parametersSL 1}L gradient_booster{L gbtree_model_param{L num_parallel_treeSL 1L num_treesSL 100L size_leaf_vectorSL 0}L gbtree_train_param{L predictorSL autoL process_typeSL defaultL tree_methodSL exactL updaterSL grow_colmaker,pruneL updater_seqSL grow_colmaker,prune}L nameSL gbtreeL specified_updaterFL updater{L
grow_colmaker{L colmaker_train_param{L default_directionSL learnL
opt_dense_colSL 1}L train_param{L alphaSL 0L cache_optSL 1L colsample_bylevelSL 1L colsample_bynodeSL 1L colsample_bytreeSL 1L etaSL 0.300000012L gammaSL 0L grow_policySL depthwiseL interaction_constraintsSL L lambdaSL 1L
learning_rateSL 0.300000012L max_binSL 256L max_cat_thresholdSL 64L max_cat_to_onehotSL 4L max_delta_stepSL 0L max_depthSL 6L
max_leavesSL 0L min_child_weightSL 1L min_split_lossSL 0L monotone_constraintsSL ()L refresh_leafSL 1L reg_alphaSL 0L
reg_lambdaSL 1L sampling_methodSL uniformL sketch_ratioSL 2L sparse_thresholdSL 0.20000000000000001L subsampleSL 1}}L prune{L train_param{L alphaSL 0L cache_optSL 1L colsample_bylevelSL 1L colsample_bynodeSL 1L colsample_bytreeSL 1L etaSL 0.300000012L gammaSL 0L grow_policySL depthwiseL interaction_constraintsSL L lambdaSL 1L
learning_rateSL 0.300000012L max_binSL 256L max_cat_thresholdSL 64L max_cat_to_onehotSL 4L max_delta_stepSL 0L max_depthSL 6L
max_leavesSL 0L min_child_weightSL 1L min_split_lossSL 0L monotone_constraintsSL ()L refresh_leafSL 1L reg_alphaSL 0L
reg_lambdaSL 1L sampling_methodSL uniformL sketch_ratioSL 2L sparse_thresholdSL 0.20000000000000001L subsampleSL 1}}}}L learner_model_param{L
base_scoreSL 5E-1L boost_from_averageSL 1L num_classSL 0L num_featureSL 13L
num_targetSL 1}L learner_train_param{L boosterSL gbtreeL disable_default_eval_metricSL 0L dsplitSL autoL objectiveSL binary:logistic}L metrics[#L {L nameSL logloss}L objective{L nameSL binary:logisticL reg_loss_param{L scale_pos_weightSL 1}}}L version[#L iii}L Model{L learner{L
attributes{L best_iterationSL 99L best_ntree_limitSL 100}L
feature_names[#L L
feature_types[#L L gradient_booster{L model{L gbtree_model_param{L num_parallel_treeSL 1L num_treesSL 100L size_leaf_vectorSL 0}L tree_info[#L di i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i L trees[#L d{L base_weights[$d#L %�^И�ʒ�j���,�� ��5�? ��c�9��?*���� ��
=����>P��?�؞� ��ڀ ?� ?� �D�O�/��?c�9>���?����c�9�� ? ��z?���� ?� � ?� � >�������L
categories[$l#L L categories_nodes[$l#L L categories_segments[$L#L L categories_sizes[$L#L L default_left[$U#L % L idi L
left_children[$l#L %
���� �������� �������������������� ������������ ! #��������������������������������L loss_changes[$d#L %A�~�A:�A��@n�@UUV@�Ȋ@=�� >kp ?*�� @wO�@S\?K|� >@�@7�?�:@
�� @ @f�� L parents[$l#L %���
L right_children[$l#L %
���� �������� �������������������� ������������ "