in connectors/aoai.py [0:0]
def get_embeddings(self, text, retry_after=True):
one_liner_text = text.replace('\n', ' ')
logging.info(f"[aoai] Getting embeddings for text: {one_liner_text[:100]}")
openai_deployment = os.getenv('AZURE_OPENAI_EMBEDDING_DEPLOYMENT')
# summarize in case it is larger than the maximum input tokens
num_tokens = GptTokenEstimator().estimate_tokens(text)
if (num_tokens > MAX_EMBEDDINGS_MODEL_INPUT_TOKENS):
prompt = f"Rewrite the text to be coherent and meaningful, reducing it to {MAX_EMBEDDINGS_MODEL_INPUT_TOKENS} tokens: {text}"
text = self.get_completion(prompt)
logging.info(f"[aoai] get_embeddings: rewriting text to fit in {MAX_EMBEDDINGS_MODEL_INPUT_TOKENS} tokens")
try:
response = self.client.embeddings.create(
input=text,
model=openai_deployment
)
embeddings = response.data[0].embedding
return embeddings
except RateLimitError as e:
retry_after_ms = e.response.headers.get('retry-after-ms')
if retry_after_ms:
retry_after_ms = int(retry_after_ms)
logging.info(f"[aoai ]get_completion: Reached rate limit, retrying after {retry_after_ms} ms")
time.sleep(retry_after_ms / 1000)
return self.get_completion(self, prompt, retry_after=False)
else:
logging.error(f"[aoai] get_completion: Rate limit error occurred, no 'retry-after-ms' provided: {e}")
raise
except Exception as e:
logging.error(f"[aoai] get_embedding: An unexpected error occurred: {e}")
raise