function_app.py (172 lines of code) (raw):

import logging import json # import asyncio import os import time import datetime from json import JSONEncoder import jsonschema import azure.functions as func from chunking import DocumentChunker from connectors import SharepointFilesIndexer, SharepointDeletedFilesPurger from connectors import ImagesDeletedFilesPurger from tools import BlobClient from utils.file_utils import get_filename # ------------------------------- # Logging configuration # ------------------------------- log_level = os.getenv('LOG_LEVEL', 'INFO').upper() log_level = getattr(logging, log_level, logging.INFO) logging.basicConfig( level=logging.INFO, format='%(asctime)s [%(levelname)s] %(message)s', datefmt='%Y-%m-%d %H:%M:%S' ) suppress_loggers = [ 'azure', 'azure.core', 'azure.core.pipeline', 'azure.core.pipeline.policies.http_logging_policy', 'azsdk-python-search-documents', 'azsdk-python-identity', 'azure.ai.openai', # Assuming 'aoai' refers to Azure OpenAI 'azure.identity', 'azure.storage', 'azure.ai.*', # Wildcard-like suppression for any azure.ai sub-loggers # Add any other specific loggers if necessary ] for logger_name in suppress_loggers: logger = logging.getLogger(logger_name) logger.setLevel(logging.WARNING) logger.propagate = False # ------------------------------- # Azure Functions # ------------------------------- app = func.FunctionApp() # --------------------------------------------- # SharePoint Connector Functions (Timer Triggered) # --------------------------------------------- @app.function_name(name="sharepoint_index_files") @app.schedule( schedule="0 */30 * * * *", arg_name="timer", run_on_startup=True ) async def sharepoint_index_files(timer: func.TimerRequest) -> None: logging.debug("[sharepoint_index_files] Started sharepoint files indexing function.") try: indexer = SharepointFilesIndexer() await indexer.run() except Exception as e: logging.error(f"[sharepoint_index_files] An unexpected error occurred: {e}", exc_info=True) @app.function_name(name="sharepoint_purge_deleted_files") @app.schedule( schedule="0 */60 * * * *", arg_name="timer", run_on_startup=False ) async def sharepoint_purge_deleted_files(timer: func.TimerRequest) -> None: logging.debug("[sharepoint_purge_deleted_files] Started sharepoint purge deleted files function.") try: purger = SharepointDeletedFilesPurger() await purger.run() except Exception as e: logging.error(f"[sharepoint_purge_deleted_files] An unexpected error occurred: {e}", exc_info=True) # --------------------------------------------- # Deleted Files Image Purger (Timer Triggered) # --------------------------------------------- @app.function_name(name="multimodality_images_purger") @app.schedule(schedule="0 0 0 * * *", # runs at 00:00 UTC daily arg_name="timer", run_on_startup=True, use_monitor=True) async def images_purge_timer(timer: func.TimerRequest): if timer.past_due: logging.info("[multimodality_images_purger] Timer is past due.") logging.info("[multimodality_images_purger] Timer trigger started.") # Purge only runs when MULTIMODAL == 'true' multi_var = (os.getenv("MULTIMODAL") or "").lower() should_run_multimodality = multi_var in ["true", "1", "yes"] # Only run if MULTIMODAL == true if not should_run_multimodality: logging.info("[multimodality_images_purger] MULTIMODAL != true. Skipping purge.") return try: purger = ImagesDeletedFilesPurger() await purger.run() except Exception as e: logging.error(f"[multimodality_images_purger] Error running images purge: {e}") # ------------------------------- # Document Chunking Function (HTTP Triggered by AI Search) # ------------------------------- # Document Chunking Function (HTTP Triggered by AI Search) @app.route(route="document-chunking", auth_level=func.AuthLevel.FUNCTION) def document_chunking(req: func.HttpRequest) -> func.HttpResponse: try: body = req.get_json() jsonschema.validate(body, schema=get_request_schema()) if body: # Log the incoming request logging.info(f'[document_chunking_function] Invoked document_chunking skill. Number of items: {len(body["values"])}.') input_data = {} # Processing one item at a time to avoid exceeding the AI Search custom skill timeout (230 seconds) # BatchSize should be set to 1 in the Skillset definition, if it is not set, will process just the last item count_items = len(body["values"]) filename = "" if count_items > 1: logging.warning('BatchSize should be set to 1 in the Skillset definition. Processing only the last item.') for i, item in enumerate(body["values"]): input_data = item["data"] filename = get_filename(input_data["documentUrl"]) logging.info(f'[document_chunking_function] Chunking document: File {filename}, Content Type {input_data["documentContentType"]}.') start_time = time.time() # Enrich the input data with the document bytes and file name blob_client = BlobClient(input_data["documentUrl"]) document_bytes = blob_client.download_blob() input_data['documentBytes'] = document_bytes input_data['fileName'] = filename # Chunk the document chunks, errors, warnings = DocumentChunker().chunk_documents(input_data) # Enrich chunks with metadata to be indexed for chunk in chunks: chunk["source"] = "blob" # Debug logging for idx, chunk in enumerate(chunks): processed_chunk = chunk.copy() processed_chunk.pop('contentVector', None) if 'content' in processed_chunk and isinstance(processed_chunk['content'], str): processed_chunk['content'] = processed_chunk['content'][:100] logging.debug(f"[document_chunking][{filename}] Chunk {idx + 1}: {json.dumps(processed_chunk, indent=4)}") # Format results values = { "recordId": item['recordId'], "data": {"chunks": chunks}, "errors": errors, "warnings": warnings } results = {"values": [values]} result = json.dumps(results, ensure_ascii=False, cls=DateTimeEncoder) end_time = time.time() elapsed_time = end_time - start_time logging.info(f'[document_chunking_function] Finished document_chunking skill in {elapsed_time:.2f} seconds.') return func.HttpResponse(result, mimetype="application/json") else: error_message = "Invalid body." logging.error(f"[document_chunking_function] {error_message}", exc_info=True) return func.HttpResponse(error_message, status_code=400) except ValueError as e: error_message = f"Invalid body: {e}" logging.error(f"[document_chunking_function] {error_message}", exc_info=True) return func.HttpResponse(error_message, status_code=400) except jsonschema.exceptions.ValidationError as e: error_message = f"Invalid request: {e}" logging.error(f"[document_chunking_function] {error_message}", exc_info=True) return func.HttpResponse(error_message, status_code=400) except Exception as e: error_message = f"An unexpected error occurred: {e}" logging.error(f"[document_chunking_function] {error_message}", exc_info=True) return func.HttpResponse(error_message, status_code=500) class DateTimeEncoder(JSONEncoder): # Override the default method def default(self, obj): if isinstance(obj, (datetime.date, datetime.datetime)): return obj.isoformat() return super().default(obj) def get_request_schema(): return { "$schema": "http://json-schema.org/draft-04/schema#", "type": "object", "properties": { "values": { "type": "array", "minItems": 1, "items": { "type": "object", "properties": { "recordId": {"type": "string"}, "data": { "type": "object", "properties": { "documentUrl": {"type": "string", "minLength": 1}, "documentSasToken": {"type": "string", "minLength": 0}, "documentContentType": {"type": "string", "minLength": 1} }, "required": ["documentUrl", "documentContentType"], }, }, "required": ["recordId", "data"], }, } }, "required": ["values"], }