function_app/bp_content_understanding_video.py (158 lines of code) (raw):

import json import logging import os import re from itertools import chain from typing import Optional import azure.functions as func from azure.identity import DefaultAzureCredential, get_bearer_token_provider from dotenv import load_dotenv from pydantic import BaseModel, Field from src.components.content_understanding_client import ( AzureContentUnderstandingClient, get_existing_analyzer_ids, ) from src.components.doc_intelligence import base64_img_str_to_url from src.helpers.common import MeasureRunTime from src.helpers.content_understanding import ( cu_fields_dict_to_markdown, extract_frames_from_video_bytes, ) from src.helpers.image import pil_img_to_base64_bytes, resize_img_by_max load_dotenv() token_provider = get_bearer_token_provider( DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default" ) bp_content_understanding_video = func.Blueprint() FUNCTION_ROUTE = "content_understanding_video" # Load environment variables CONTENT_UNDERSTANDING_ENDPOINT = os.getenv("CONTENT_UNDERSTANDING_ENDPOINT") # Load existing analyzer schemas with open("config/content_understanding_schemas.json", "r") as f: CONTENT_UNDERSTANDING_SCHEMAS = json.load(f) cu_client = AzureContentUnderstandingClient( endpoint=CONTENT_UNDERSTANDING_ENDPOINT, azure_ad_token_provider=token_provider, api_version="2024-12-01-preview", enable_face_identification=False, ) # Get list of existing CU analyzers existing_cu_analyzer_ids = get_existing_analyzer_ids(cu_client) class FunctionReponseModel(BaseModel): """ Defines the schema that will be returned by the function. We'll use this to ensure that the response contains the correct values and structure, and to allow a partially filled response to be returned in case of an error. """ success: bool = Field( default=False, description="Indicates whether the pipeline was successful." ) error_text: Optional[str] = Field( default=None, description="If an error occurred, this field will contain the error message.", ) func_time_taken_secs: Optional[float] = Field( default=None, description="The total time taken to process the request." ) cu_raw_response: Optional[dict] = Field( default=None, description="The raw API response from Content Understanding." ) cu_time_taken_secs: Optional[float] = Field( default=None, description="The time taken to extract the text using Content Understanding.", ) segment_formatted_field_mds: Optional[list[str]] = Field( default=None, description="A list of markdown summaries of the extracted fields for each segment of the video.", ) rich_markdown_output: Optional[str] = Field( default=None, description=( "A copy of the markdown field provided by the Content Understanding API response, but with key frame images" " embedded directly into the string (as base64 image data) instead of references to video timestamps." ), ) @bp_content_understanding_video.route(route=FUNCTION_ROUTE) def content_understanding_video( req: func.HttpRequest, ) -> func.HttpResponse: """ This function processes a request to extract information from a video file using Azure Content Understanding. If an error occurs at any stage, the function will return a partial response with the error message and the fields that have been populated up to that point. """ logging.info(f"Python HTTP trigger function `{FUNCTION_ROUTE}` received a request.") # Create the object to hold all intermediate and final values. We will progressively update # values as each stage of the pipeline is completed, allowing us to return a partial # response in case of an error at any stage. output_model = FunctionReponseModel(success=False) try: # Create error_text and error_code variables. These will be updated as # we move through the pipeline so that if a step fails, the vars reflect # what has failed. If all steps complete successfully, the vars are # never used. error_text = "An error occurred during processing." error_code = 422 func_timer = MeasureRunTime() func_timer.start() # Check the request body request_json_content = json.loads(req.files["json"].read().decode("utf-8")) analyzer_id = request_json_content.get("analyzer_id", None) file_bytes = req.files["file"].read() ### 1. Ensure the analyzer exists error_text = "Invalid Analyzer ID." error_code = 500 # Check if the analyzer already exists when the resource was last checked. global existing_cu_analyzer_ids if analyzer_id not in existing_cu_analyzer_ids: # Refresh the list of existing analyzers existing_cu_analyzer_ids = get_existing_analyzer_ids(cu_client) if analyzer_id not in existing_cu_analyzer_ids: # Analyzer is not available or deployed in the resource. raise KeyError( ( f"Analyzer ID '{analyzer_id}' is not available. " "Ensure that the Analyzer has already been created within the AI services resource." ) ) ### 2. Extract the content using Content Understanding error_text = "An error occurred during Content Understanding extraction." with MeasureRunTime() as cu_timer: response = cu_client.begin_analyze( analyzer_id=analyzer_id, file_bytes=file_bytes, ) cu_result = cu_client.poll_result(response, timeout_seconds=180) output_model.cu_raw_response = cu_result output_model.cu_time_taken_secs = cu_timer.time_taken ### 3. Extract key frames from the video input error_text = "An error occurred during post-processing." all_key_frame_times_ms = chain.from_iterable( [ segment_result.get("KeyFrameTimesMs", []) for segment_result in cu_result["result"]["contents"] ] ) key_frame_mapper = extract_frames_from_video_bytes( file_bytes, all_key_frame_times_ms, img_type="pil" ) # Reduce the size of the frames key_frame_mapper = { frame_time_ms: resize_img_by_max(img, 480) for frame_time_ms, img in key_frame_mapper.items() } segment_formatted_field_mds = [] rich_markdown_output = "" for segment_contents in cu_result["result"]["contents"]: # Get key frames and segment summary segment_md = segment_contents.get("markdown", "") # Replace image '![](KeyFrame.1234.jpg)' references with base64 strings pattern = r"!\[\]\(keyFrame\.\d+\.jpg\)" matches = re.findall(pattern, segment_md) for match in matches: key_frame_time_ms = int(match.split(".")[1].split(".")[0]) base64_img_str = pil_img_to_base64_bytes( key_frame_mapper[key_frame_time_ms] ) segment_md = segment_md.replace( match, "![]({})".format( base64_img_str_to_url( base64_img_str.decode(), mime_type="image/jpeg" ) ), ) rich_markdown_output += f"{segment_md}\n\n" segment_formatted_field_md = cu_fields_dict_to_markdown( segment_contents.get("fields", {}) ) segment_formatted_field_mds.append(segment_formatted_field_md) # Convert the key frames to base64 output_model.rich_markdown_output = rich_markdown_output output_model.segment_formatted_field_mds = segment_formatted_field_mds ### 5. All steps completed successfully, set success=True and return the final result output_model.success = True output_model.func_time_taken_secs = func_timer.stop() return func.HttpResponse( body=output_model.model_dump_json(), mimetype="application/json", status_code=200, ) except Exception as _e: # If an error occurred at any stage, return the partial response. Update the error_text # field to contain the error message, and ensure success=False. output_model.success = False output_model.error_text = error_text output_model.func_time_taken_secs = func_timer.stop() logging.exception(output_model.error_text) return func.HttpResponse( body=output_model.model_dump_json(), mimetype="application/json", status_code=error_code, )