in code/embedding-function/utilities/helpers/azure_search_helper.py [0:0]
def get_conversation_logger(self):
fields = [
SimpleField(
name="id",
type=SearchFieldDataType.String,
key=True,
filterable=True,
),
SimpleField(
name="conversation_id",
type=SearchFieldDataType.String,
filterable=True,
facetable=True,
),
SearchableField(
name="content",
type=SearchFieldDataType.String,
),
SearchField(
name="content_vector",
type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
searchable=True,
vector_search_dimensions=self.search_dimensions,
vector_search_profile_name="myHnswProfile",
),
SearchableField(
name="metadata",
type=SearchFieldDataType.String,
),
SimpleField(
name="type",
type=SearchFieldDataType.String,
facetable=True,
filterable=True,
),
SimpleField(
name="user_id",
type=SearchFieldDataType.String,
filterable=True,
facetable=True,
),
SimpleField(
name="sources",
type=SearchFieldDataType.Collection(SearchFieldDataType.String),
filterable=True,
facetable=True,
),
SimpleField(
name="created_at",
type=SearchFieldDataType.DateTimeOffset,
filterable=True,
),
SimpleField(
name="updated_at",
type=SearchFieldDataType.DateTimeOffset,
filterable=True,
),
]
return AzureSearch(
azure_search_endpoint=self.env_helper.AZURE_SEARCH_SERVICE,
azure_search_key=(
self.env_helper.AZURE_SEARCH_KEY
if self.env_helper.is_auth_type_keys()
else None
),
index_name=self.env_helper.AZURE_SEARCH_CONVERSATIONS_LOG_INDEX,
embedding_function=self.llm_helper.get_embedding_model().embed_query,
fields=fields,
user_agent="langchain chatwithyourdata-sa",
)