labs/embed_file_demo.ipynb (150 lines of code) (raw):

{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "vscode": { "languageId": "plaintext" } }, "outputs": [], "source": [ "{\n", " \"cells\": [\n", " {\n", " \"cell_type\": \"markdown\",\n", " \"metadata\": {},\n", " \"source\": [\n", " \"# Demonstration of `embedder.embed_file`\\n\",\n", " \"\\n\",\n", " \"This notebook walks you through the process of calling the `embedder.embed_file(file_sas, file_name, sharepoint_file_id)` method from the `file_processing.py` module.\\n\",\n", " \"We'll illustrate how to:\\n\",\n", " \"1. Set up environment variables or configuration.\\n\",\n", " \"2. Obtain an SAS URL (`file_sas`) for a file.\\n\",\n", " \"3. Provide the file name (`file_name`).\\n\",\n", " \"4. Define the SharePoint file ID (`sharepoint_file_id`).\\n\",\n", " \"5. Invoke the `embed_file` function.\\n\"\n", " ]\n", " },\n", " {\n", " \"cell_type\": \"markdown\",\n", " \"metadata\": {},\n", " \"source\": [\n", " \"## 1. Imports and Setup\\n\\n\",\n", " \"Make sure you have all dependencies installed (like `azure-functions`, `azure.storage.blob`, and the utilities in your project).\"\n", " ]\n", " },\n", " {\n", " \"cell_type\": \"code\",\n", " \"metadata\": {\n", " \"tags\": []\n", " },\n", " \"source\": [\n", " \"import os\\n\",\n", " \"from utilities.helpers.env_helper import EnvHelper\\n\",\n", " \"from utilities.helpers.embedders.embedder_factory import EmbedderFactory\\n\",\n", " \"\\n\",\n", " \"# Adjust these to match your environment or local settings\\n\",\n", " \"os.environ['LOGLEVEL'] = 'DEBUG'\\n\",\n", " \"\\n\",\n", " \"# Initialize any environment-specific helpers\\n\",\n", " \"env_helper = EnvHelper()\"\n", " ],\n", " \"execution_count\": null,\n", " \"outputs\": []\n", " },\n", " {\n", " \"cell_type\": \"markdown\",\n", " \"metadata\": {},\n", " \"source\": [\n", " \"## 2. Example Values for `embed_file`\\n\\n\",\n", " \"Below, replace the placeholders with real values:\\n\",\n", " \"- `file_sas`: A valid SAS URL to the blob.\\n\",\n", " \"- `file_name`: The blob name.\\n\",\n", " \"- `sharepoint_file_id`: Corresponding ID for the SharePoint file.\"\n", " ]\n", " },\n", " {\n", " \"cell_type\": \"code\",\n", " \"metadata\": {\n", " \"tags\": []\n", " },\n", " \"source\": [\n", " \"# Example placeholders\\n\",\n", " \"file_sas = \\\"https://mystorageaccount.blob.core.windows.net/container/myfile.txt?sp=rl&st=...\\\" # Example SAS URL\\n\",\n", " \"file_name = \\\"myfile.txt\\\"\\n\",\n", " \"sharepoint_file_id = \\\"12345\\\"\\n\"\n", " ],\n", " \"execution_count\": null,\n", " \"outputs\": []\n", " },\n", " {\n", " \"cell_type\": \"markdown\",\n", " \"metadata\": {},\n", " \"source\": [\n", " \"## 3. Create Embedder and Call `embed_file`\\n\\n\",\n", " \"We create an embedder instance using `EmbedderFactory.create` and call the function with our parameters.\"\n", " ]\n", " },\n", " {\n", " \"cell_type\": \"code\",\n", " \"metadata\": {\n", " \"tags\": []\n", " },\n", " \"source\": [\n", " \"# Create the embedder\\n\",\n", " \"embedder = EmbedderFactory.create(env_helper)\\n\",\n", " \"\\n\",\n", " \"# Call embed_file\\n\",\n", " \"embedder.embed_file(\\n\",\n", " \" file_sas=file_sas,\\n\",\n", " \" file_name=file_name,\\n\",\n", " \" sharepoint_file_id=sharepoint_file_id\\n\",\n", " \")\\n\",\n", " \"\\n\",\n", " \"print(\\\"Embedding process initiated.\\\")\"\n", " ],\n", " \"execution_count\": null,\n", " \"outputs\": []\n", " },\n", " {\n", " \"cell_type\": \"markdown\",\n", " \"metadata\": {},\n", " \"source\": [\n", " \"## 4. Next Steps\\n\\n\",\n", " \"1. Check the logs or application output to confirm the embedding was handled.\\n\",\n", " \"2. Monitor any search or index updates that follow.\\n\",\n", " \"3. Customize or extend this notebook to run multiple test files.\\n\"\n", " ]\n", " }\n", " ],\n", " \"metadata\": {\n", " \"kernelspec\": {\n", " \"display_name\": \"Python 3\",\n", " \"language\": \"python\",\n", " \"name\": \"python3\"\n", " },\n", " \"language_info\": {\n", " \"name\": \"python\",\n", " \"mimetype\": \"text/x-python\",\n", " \"codemirror_mode\": {\n", " \"name\": \"ipython\",\n", " \"version\": 3\n", " }\n", " }\n", " },\n", " \"nbformat\": 4,\n", " \"nbformat_minor\": 5\n", "}" ] } ], "metadata": { "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 2 }