in 3_llmops-aifoundry/3_3_optimizing/evaluation/aggregate_variants_results.py [0:0]
def aggregate_variants_results(results: List[dict]):
aggregate_results = {}
for result in results:
for name, value in result.items():
if name not in aggregate_results.keys():
aggregate_results[name] = []
try:
float_val = float(value)
except Exception:
float_val = np.nan
aggregate_results[name].append(float_val)
for name, value in aggregate_results.items():
metric_name = name
aggregate_results[name] = np.nanmean(value)
if 'pass_rate' in metric_name:
metric_name = metric_name + "(%)"
aggregate_results[name] = aggregate_results[name] * 100.0
aggregate_results[name] = round(aggregate_results[name], 2)
log_metric(metric_name, aggregate_results[name])
return aggregate_results