in 3_llmops-aifoundry/3_3_optimizing/evaluation/concat_scores.py [0:0]
def concat_results(groundesness_score: str):
load_list = [{'name': 'gpt_groundedness', 'score': groundesness_score}]
score_list = []
errors = []
for item in load_list:
try:
score = item["score"]
match = re.search(r'\d', score)
if match:
score = match.group()
score = float(score)
except Exception as e:
score = np.nan
errors.append({"name": item["name"], "msg": str(e), "data": item["score"]})
score_list.append({"name": item["name"], "score": score})
variant_level_result = {}
for item in score_list:
item_name = str(item["name"])
variant_level_result[item_name] = item["score"]
variant_level_result[item_name + '_pass_rate'] = 1 if item["score"] > 3 else 0
return variant_level_result