in utils/aml_common.py [0:0]
def get_or_create_environment_asset(ml_client, env_name, conda_yml="cloud/conda.yml", update=False):
try:
latest_env_version = max([int(e.version) for e in ml_client.environments.list(name=env_name)])
if update:
raise ResourceExistsError('Found Environment asset, but will update the Environment.')
else:
env_asset = ml_client.environments.get(name=env_name, version=latest_env_version)
print(f"Found Environment asset: {env_name}. Will not create again")
except (ResourceNotFoundError, ResourceExistsError) as e:
print(f"Exception: {e}")
env_docker_image = Environment(
image="mcr.microsoft.com/azureml/curated/acft-hf-nlp-gpu:latest",
conda_file=conda_yml,
name=env_name,
description="Environment created for llm fine-tuning.",
)
env_asset = ml_client.environments.create_or_update(env_docker_image)
print(f"Created Environment asset: {env_name}")
return env_asset