scripts/knowledge_distillation_qwen2.yaml (70 lines of code) (raw):
# Model Arguments
model:
_component_: torchtune.models.qwen2.lora_qwen2_0_5b
lora_attn_modules: ['q_proj', 'k_proj', 'v_proj']
apply_lora_to_mlp: False
lora_rank: 32
lora_alpha: 64
teacher_model:
_component_: torchtune.models.qwen2.qwen2_1_5b
tokenizer:
_component_: torchtune.models.qwen2.qwen2_tokenizer
path: {{student_model_dir}}/vocab.json
merges_file: {{student_model_dir}}/merges.txt
max_seq_len: null
checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: {{student_model_dir}}
checkpoint_files: [
model.safetensors
]
recipe_checkpoint: null
output_dir: {{model_output_dir}}
model_type: QWEN2
teacher_checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: {{teacher_model_dir}}
checkpoint_files: [
model.safetensors
]
recipe_checkpoint: null
output_dir: teacher-tmp
model_type: QWEN2
resume_from_checkpoint: False
# Dataset and Sampler
dataset:
_component_: torchtune.datasets.instruct_dataset
source: json
data_files: {{train_path}}
column_map:
input: instruction
output: output
train_on_input: False
packed: False
split: train
seed: null
shuffle: True
# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.training.get_cosine_schedule_with_warmup
num_warmup_steps: 100
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
kd_loss:
_component_: torchtune.modules.loss.ForwardKLWithChunkedOutputLoss
kd_ratio: 0.5
# Training
epochs: 1
max_steps_per_epoch: null
batch_size: 4
gradient_accumulation_steps: 4
compile: False
# Logging
output_dir: {{log_dir}}/kd_output
metric_logger:
_component_: torchtune.training.metric_logging.{{metric_logger}}
log_dir: {{log_dir}}/training_logs
log_every_n_steps: 1
log_peak_memory_stats: True
# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: False