scripts/lora_finetune_phi4.yaml (81 lines of code) (raw):
# Config for single device LoRA finetuning in lora_finetune_single_device.py
# using a Phi4 (14B) model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download microsoft/phi-4 --output-dir /tmp/phi-4 --hf-token <HF_TOKEN>
#
# To launch on a single device, run the following command from root:
# tune run lora_finetune_single_device --config phi4/lora_single_device
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run lora_finetune_single_device --config phi4/lora_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only for training on single device.
# Model arguments
model:
_component_: torchtune.models.phi4.lora_phi4_14b
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj']
apply_lora_to_mlp: True
apply_lora_to_output: False
lora_rank: 8 # higher increases accuracy and memory
lora_alpha: 16 # usually alpha=2*rank
lora_dropout: 0.0
# Tokenizer
tokenizer:
_component_: torchtune.models.phi4.phi4_14b_tokenizer
vocab_path: {{model_dir}}/vocab.json
merges_path: {{model_dir}}/merges.txt
max_seq_len: null
# Checkpointer
checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: {{model_dir}}
checkpoint_files: [
model-00001-of-00006.safetensors,
model-00002-of-00006.safetensors,
model-00003-of-00006.safetensors,
model-00004-of-00006.safetensors,
model-00005-of-00006.safetensors,
model-00006-of-00006.safetensors,
]
recipe_checkpoint: null
output_dir: {{model_output_dir}}
model_type: PHI3_MINI
resume_from_checkpoint: False
save_adapter_weights_only: False
# Dataset
dataset:
_component_: torchtune.datasets.instruct_dataset
source: json
data_files: {{train_path}}
column_map:
input: instruction
output: output
train_on_input: False
packed: False
split: train
seed: null
shuffle: True
# Fine-tuning arguments
epochs: 1
max_steps_per_epoch: null
batch_size: 2
gradient_accumulation_steps: 8
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.training.get_cosine_schedule_with_warmup
num_warmup_steps: 100
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
clip_grad_norm: null
compile: False
# Training env
device: cuda
# Memory management
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory
# Reduced precision
dtype: bf16
# Logging
output_dir: {{log_dir}}/lora_finetune_output
metric_logger:
_component_: torchtune.training.metric_logging.{{metric_logger}}
log_dir: {{log_dir}}/training_logs
log_every_n_steps: 1
log_peak_memory_stats: False
# Showcase the usage of PyTorch profiler
# Set enabled to False as it's only needed for debugging training
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False
#Output directory of trace artifacts
output_dir: {{log_dir}}/profiling_outputs
#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True
#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False
# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 5
active_steps: 2
num_cycles: 1