def apply_rotary_emb()

in inference/model.py [0:0]


def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
    """
    Applies rotary positional embeddings to the input tensor.

    Args:
        x (torch.Tensor): Input tensor with positional embeddings to be applied.
        freqs_cis (torch.Tensor): Precomputed complex exponential values for positional embeddings.

    Returns:
        torch.Tensor: Tensor with rotary embeddings applied.
    """
    dtype = x.dtype
    x = torch.view_as_complex(x.float().view(*x.shape[:-1], -1, 2))
    freqs_cis = freqs_cis.view(1, x.size(1), 1, x.size(-1))
    y = torch.view_as_real(x * freqs_cis).flatten(3)
    return y.to(dtype)