in inference/model.py [0:0]
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for parallel embedding layer.
Args:
x (torch.Tensor): Input tensor containing token indices.
Returns:
torch.Tensor: Embedded representations.
Raises:
ValueError: If `world_size` is not defined.
"""
if world_size > 1:
mask = (x < self.vocab_start_idx) | (x >= self.vocab_end_idx)
x = x - self.vocab_start_idx
x[mask] = 0
y = F.embedding(x, self.weight)
if world_size > 1:
y[mask] = 0
dist.all_reduce(y)
return y